Another Crank But Wont Start

Andresquintana.mma

Active Member
Nov 28, 2014
191
19
28
Hello I have an 89 4 cylinder conversion with a 347 crate engine trick flow heads, holley systemax intake full exhaust. Egr is eliminated. The car sat for about 6 months. I got around to doing the rear main seal leak then bolted everything back up. The car turned on first try no problem. Then I pushed it back to put new door handles in and I bolted the computer back up inside the fender and now it doesn't want to start.

I've swapped my fuel pump because when I turn the key on and the fuel pump sounds like it stays on. I have fuel up to the rail. I'm not sure if the regulator is working. It's relatively new it's an after market areomotive. The pump still sounds like it stays on with the new pump. Tried to start it without mass air flow sensor, sprayed carb cleaner in the throttle body, swapped Iac. I changed the coil and starter solenoid. I have spark to the plugs. New ignition switch. I'm thinking electrical. I've had this problem before and it was my fuel pump not turning on then I took it to a shop and they ran it hot. Didn't have a problem with it until now. About to change act and ect. I'm not to good with electrical so I've followed the crank but no start check list to the best of my ability. I'm just not good with electrical so any help would be much appreciated. The car runs great when it turns on so I'd love more then anythibg to get it going.
 
  • Sponsors (?)


I am the guy who wrote the Cranks OK, but No Start Checklist for Fuel Injected 5.0 Mustangs model years 1986-1995.

My prime goal here at Stangnet is to teach people how to do structured troubleshooting. Simply put, that means figure out what is working and look for things that aren't working.
It is the things that aren't working that you need to focus on.
I want you to write down 3 words: Test, Observe, Diagnose
. Have them tattooed on the back of your hands if necessary.
Since I have no intention of traveling where you are, it is up to you to follow the directions and do the work.

You don't have to be that good with electrical stuff, 90% of the guys here aren't.

What you do need to be good at is reading and following directions. Start at the top of the checklist and work your way down. Don't jump around and pick and choose because you may miss just what you need to find and fix the problem.
Print the checklist out and do it a step at a time; write down what you saw happen. Then report back what you observed.

You need to be able to get the engine turning over using the battery and the starter; that's another checklist by itself. Search for No Crank checklist for 5.0 Mustangs with my user name, jrichker. That will show you how to fix no crank problems.

Go back and tell us when the engine won't start:
1.) Does it start OK only when cold ?
2.) Does it start OK only when hot?
3.) Does it not start at all, hot or cold?

Engine turns over good using the battery and starter:
Once the engine will turn over good using the starter you need 3 things: spark, fuel and compression to make it run. Spark and fuel are timed events; they need to happen at the right time.
Compression problems are rare, unless you have taken the heads off, adjusted the valves, or done work in the engine internals. No compression problems due to failure of the engine internals is usually the camshaft drive chain or camshaft driven sprocket.

When the engine doesn't start then, follow the checklist one item at a time. There are two basic areas in the checklist: ignition and fuel. The fuel delivery depends on the ignition working properly, so the ignition gets tested first.

Cranks OK, but No Start Checklist for Fuel Injected 5.0 Mustangs model years 1986-1995

A word about this checklist before you start: it is arranged in a specific order to put the most likely failure items first. That will save you time, energy and money. Start at the top of the list and work your way down. Jumping around will possibly cause you to miss just what you need to see to find and fix the problem. Don’t skip any steps because the next step depends on the last step working correctly.


Revised 15-Sep-2014 to add temporarily bypassing the MSD box if it is present.

All text applies to all models unless stated otherwise.

Note: 94-95 specific changes are in red

1.) Remove push on connector (small red/blue wire) from starter solenoid and turn ignition switch to the Run position. Place car in neutral or Park and set the parking brake. Remove the coil wire from distributor & and hold it 3/8” away from the engine block. Jumper the screw to the big bolt on the starter solenoid that has the battery wire connected to it. You should get a nice fat blue spark.
Most of the items are electrical in nature, so a test light, or even better, a voltmeter, is helpful to be sure they have power to them.

No spark, possible failed items in order of their probability:
A.) MSD, Crane, or other ignition box if present - Bypass it and return to stock configuration if possible. Do this as a temporary measure to eliminate it as a possible problem source.
B.) PIP sensor in distributor. The PIP sensor supplies the timing pulse to trigger the TFI and injectors. A failing PIP sensor will sometimes let the engine start if the SPOUT is removed. See paragraph 5A – Using a noid light will tell if the PIP is working by flashing when the engine is cranking.
C.) TFI module: use a test light to check the TFI module. Place one lead of the test light on the red/green wire on the ignition coil connector and the other lead on the dark green/yellow wire on the ignition coil connector. If the TFI is working properly, the test light will flash when the engine is cranked using the ignition switch.
D.) Coil
E.) No EEC or computer power - EEC or computer relay failure
86-93 models only: EEC relay next to computer - look for 12 volts at the fuel injector red wires.
94-95 models only: EEC or PCM power relay in the constant control relay module. Look for 12 volts at the fuel injector red wires.
Both 86-93 and 94-95 models: No 12 volts with the ignition switch in the run position on the fuel injector red wires. The relay has failed or there is no power coming from the ignition switch. Make sure that there is 12 volts on the red/green wire on the coil before replacing the relay.
F.) No EEC or computer power - fuse or fuse link failure
86-93 models only: Fuse links in wiring harness - look for 12 volts at the fuel injector red wires. All the fuse links live in a bundle up near the starter solenoid. Look for a 20 gauge blue fuse link connected to 2 black/orange 14 gauge wires.
94-95 models only: 20 amp EEC fuse in the engine compartment fuse box. Look for 12 volts at the fuel injector red wires.
G.) Ignition switch - look for 12 volts at the ignition coil red/lt green wire. No 12 volts, blown fuse link or faulty ignition switch. Remove the plastic from around the ignition switch and look for 12 volts on the red/green wire on the ignition switch with it in the Run position. No 12 volts and the ignition switch is faulty. If 12 volts is present in the Run position at the ignition switch but not at the coil, then the fuse or fuse link is blown.
Note: fuses or fuse links blow for a reason. Don’t replace either a fuse or fuse link with one with a larger rating than stock. Doing so invites an electrical fire.
Ignition fuse links may be replaced with an inline fuse holder and 5 amp fuse for troubleshooting purposes.
94-95 models only: Check inside fuse panel for fuse #18 blown – 20 amp fuse
H.) Missing or loose computer power ground. The computer has its own dedicated power ground that comes off the ground pigtail on the battery ground wire. Due to it's proximity to the battery, it may become corroded by acid fumes from the battery.
In 86-90 model cars, it is a black cylinder about 2 1/2" long by 1" diameter with a black/lt green wire.
In 91-95 model cars it is a black cylinder about 2 1/2" long by 1" diameter with a black/white wire.
You'll find it up next to the starter solenoid where the wire goes into the wiring harness
I.) Computer. Don’t replace the computer just because you don’t understand how it works. Computers seldom fail, it usually is a sensor or wiring problem that causes the problems.
J.) Bad or missing secondary power ground. It is located between the back of the intake manifold and the driver's side firewall. It supplies ground for the alternator, A/C compressor clutch and other electrical accessories such as the gauges.
K.) Engine fires briefly, but dies immediately when the key is released to the Run position. Crank the engine & when it fires off, pull the small push on connector (red/blue wire) off the starter relay (Looks like it is stuck on a screw). Hold the switch in the crank position: if it continues to run there is a problem with either the ignition switch or TFI module. Check for 12 volts at the red/green wire on the coil with the switch in the Run position. Good 12 volts, then replace the TFI. No 12 volts, replace the ignition switch.

Wiring Diagrams:

See the following website for some help from Tmoss (diagram designer) & Stang&2Birds (website host) for help on 88-95 wiring Mustang FAQ - Engine Information Everyone should bookmark this site.

Ignition switch wiring
http://www.veryuseful.com/mustang/tech/engine/images/IgnitionSwitchWiring.gif

Fuel, alternator, A/C and ignition wiring
http://www.veryuseful.com/mustang/tech/engine/images/fuel-alt-links-ign-ac.gif

Complete computer, actuator & sensor wiring diagram for 88-91 Mass Air Mustangs
http://www.veryuseful.com/mustang/tech/engine/images/88-91_5.0_EEC_Wiring_Diagram.gif

Complete computer, actuator & sensor wiring diagram for 91-93 Mass Air Mustangs
http://www.veryuseful.com/mustang/tech/engine/images/91-93_5.0_EEC_Wiring_Diagram.gif

Complete computer, actuator & sensor wiring diagram for 94-95 Mass Air Mustangs
http://www.veryuseful.com/mustang/tech/engine/images/94-95_5.0_EEC_Wiring_Diagram.gif


AutoZone wiring diagrams: You can navigate to the diagrams yourself via Repair Info | AutoZone.com and select the car year, make, model and engine. That will enable you to bring up the wiring diagram for your particular car.

2.) Spark at coil wire, pull #1 plug wire off at the spark plug and check to see spark. No spark, possible failed items in order of their probability: [/b]
A.) Moisture inside distributor – remove cap, dry off & spray with WD40
B.) Distributor cap
C.) Rotor
D.) Spark Plug wires
E.) Coil weak or intermittent - you should see 3/8" fat blue spark with a good coil

3.) Spark at spark plug, but no start.
Next, get a can of starting fluid (ether) from your local auto parts store: costs a $1.30 or so. Then pull the air duct off at the throttle body elbow, open the throttle, and spray the ether in it. Reconnect the air duct and try to start the car. Do not try to start the car without reconnecting the air duct.

Two reasons:
1.) If it backfires, the chance for a serious fire is increased.
2.) On Mass Air cars, the computer needs to measure the MAF flow once the engine starts.
If it starts then, you have a fuel management issue. Continue the checklist with emphasis of fuel related items that follow. If it doesn’t, then it is a computer or timing issue: see Step 4.

Clue – listen for the fuel pump to prime when you first turn the ignition switch on. It should run for 2-4 seconds and shut off. To trick the fuel pump into running, find the EEC test connector and jump the connector in the Upper RH corner to ground. The EEC connector is near the wiper motor and LH hood hinge.

attachment.php


If the relay & inertia switch are OK, you will have power to the pump. Check fuel pressure – remove the cap from the Schrader valve behind the alternator and depress the core. Fuel should squirt out, catch it in a rag. Beware of fire hazard when you do this. In a pinch, you can use a tire pressure gauge to measure the fuel pressure. It may not be completely accurate, but you will have some clue as to how much pressure you have. If you have any doubts about having sufficient fuel flow/pressure, rent a fuel pressure test gauge from the auto parts store. That will tell you for sure if you have adequate fuel pressure.


4.) No fuel pressure, possible failed items in order of their probability:
A.) Tripped inertia switch – Coupe & hatch cars hide it under the plastic trim covering the driver's side taillight. Use the voltmeter or test light to make sure you have power to both sides of the switch
B.) Fuel pump power relay – located under the driver’s seat in most stangs built before 92. On 92 and later model cars it is located below the Mass Air Flow meter. Look for 12 volts at the Pink/Black wire on the fuel pump relay.
C.) Clogged fuel filter
D.) Failed fuel pump
E.) 86-90 models only: Blown fuse link in wiring harness. Look for 12 volts at the Orange/Lt Blue wire on the fuel pump relay.
91-93 models only Blown fuse link in wiring harness. Look for 12 volts at the Pink/Black wire on the fuel pump relay.
The fuse links for all model years 86-93 live in the wiring harness near the starter solenoid.
94-95 models only: 20 amp fuel pump fuse in the engine compartment fuse box. Look for 12 volts at the Dark green/yellow wire on the constant control relay module.
F.) Engine seem to load up on fuel and may have black smoke at the tailpipe. Fuel pressure regulator failed. Remove the vacuum line from the regulator and inspect for fuel escaping while the pump is running. If fuel is coming out the vacuum port, the regulator has failed. Check the regulator vacuum line for fuel too. Disconnect it from the engine and blow air though it. If you find gas, the regulator has failed.

5.) Fuel pressure OK, the injectors are not firing.
A.) The PIP sensor in the distributor tells the computer when to fire the injectors. A failing PIP sensor will sometimes let the engine start if the SPOUT is removed.
A noid light available from any auto parts store, is one way to test the injector circuit to see if the injectors are firing. The noid light plugs into the fuel injector harness in place of any easily accessible injector. Plug it in and try to start the engine: it will flash if the injector is firing.

I like to use an old injector with compressed air applied to the injector where the fuel rail would normally connect. I hook the whole thing up, apply compressed air to the injector and stick it in a paper cup of soapy water. When the engine cranks with the ignition switch on, if the injector fires, it makes bubbles. Cheap if you have the stuff laying around, and works good too.
B.) Pull an injector wire connector off and look for 12 volts on the red wire when the ignition switch is on.
C.) No power, then look for problems with the 10 pin connecter (salt & pepper shakers at the rear of the upper manifold).

See the graphic for the 10 pin connector circuit layout.
salt-pepper-10-pin-connectors-65-jpg.68512

The injector power pin is the VPWR pin in the black 10 pin connector.


D.) No power and the 10 pin connections are good: look for broken wiring between the orange/black wire on the EEC relay and the red wire for the 10 pin connectors.
E.) TPS voltage exceeds 3.7 volts with the throttle closed. This will shut off the injectors, since the computer uses this strategy to clear a flooded engine. Use a DVM, a pair of safety pins, and probe the black/white and green wires to measure the TPS voltage.
On a 94-95 Mustang, probe the black/white and grey/white wires to measure the TPS voltage.
It should be .5-.1.0 volts with the key on, engine not running. Note that if the black/white wire (signal ground) has a bad connection, you will get some strange readings. Make a second measurement using the battery post as the ground to eliminate any ground problems. If the readings are different by more than 5%, you may have a high resistance condition in the black/white signal ground circuit.

6.) Spark & fuel pressure OK.
A.) Failed IAB or improperly set base idle (no airflow to start engine). Press the throttle ¼ way down and try to start the car. See the "Surging Idle Checklist for help with all your idle/stall problems.
B.) Failed computer (not very likely)
C.) Engine ignition or cam timing off: only likely if the engine has been worked on recently. If you removed the distributor, there is a good probability that you installed it 180 degrees out of time.
D.) Firing order off: HO & 351 use a different firing order from the non HO engines.
HO & 351W 1-3-7-2-6-5-4-8
Non HO 1-5-4-2-6-3-7-8
E.) No start when hot - Press the throttle to the floor & try starting it if you get this far. If it starts, replace the ECT.
F. ) Engine that has had the heads off or valves adjusted. Do a compression test to make sure the valves are not adjusted too tight. You should have a
 
  • Like
Reactions: 1 user
Thank you Jrichker it doesn't want to start at all anymore. I have it wanting to turn over with the battery and starter as of now. I will print the list out and start from the beginning. Thank you again.
 
Update: went thru the check list and got up to fuel pump relay under the driver seat (I also have one under the hood) Switched the one under the seat and it turned on easily. The next day it did not want to start. I tested for 12 volts on the pink w/ black wire under the seat. Also checked orange wire to the relay under the maf sensor both did not have much juice at all 0.02 maybe. I'm confused as to if I'm supposed to have two fuel pump relay or if the harness came with an extra one when I converted the 4 cylinder to a v8 with maf? Will I need to fully replace these wires that aren't giving any volts?
 
I would be looking at the wires for the fuel pump/relay. If your car was running one day then the next day it does not run and had no/little power at the relay wires..i would be looking at those wires.
 
  • Like
Reactions: 1 user
Fuel Pump Troubleshooting for 87-90 Mustangs

Revised 11-Mar-2014 to add new fuel pump wiring diagram.

Clue – listen for the fuel pump to prime when you first turn the ignition switch on. It should run for 1-3 seconds and shut off. To trick the fuel pump into running, find the ECC test connector and jump the connector in the upper LH corner to ground.

Underhoodpictures007-01.jpg


Underhoodpictures010.jpg


Turn the ignition switch on when you do this test.
attachment.php


If the fuse links are OK, you will have power to the pump. Check fuel pressure – remove the cap from the Schrader valve behind the alternator and depress the core. Fuel should squirt out, catch it in a rag. A tire pressure gauge can also be used if you have one - look for 37-40 PSI. Beware of fire hazard when you do this.

No fuel pressure, possible failed items in order of their probability:
A.) Tripped inertia switch – press reset button on the inertia switch. The hatch cars hide it under the plastic trim covering the driver's side taillight. Use the voltmeter or test light to make sure you have power to both sides of the switch

B.) Fuel pump power relay – located under the driver’s seat in most Mustangs built before 92. See the diagram to help identify the fuel pump relay wiring colors. Be sure to closely check the condition of the relay, wiring & socket for corrosion and damage.
C.) Clogged fuel filter
D.) Failed fuel pump
E.) Blown fuse link in wiring harness.
F.) Fuel pressure regulator failed. Remove vacuum line from regulator and inspect
for fuel escaping while pump is running.

87-90-5-0-mustang-fuel-pump-wiring-gif.88241


The electrical circuit for the fuel pump has two paths, a control path and a power
path.

Control Path
The control path consists of the inertia switch, the computer, and the fuel pump relay coil. It turns the fuel pump relay on or off under computer control. The switched power (red wire) from the ECC relay goes to the inertia switch (red/black wire) then from the inertia switch to the relay coil and then from the relay coil to the computer (tan/ Lt green wire). The computer provides the ground path to complete the circuit. This ground causes the relay coil to energize and close the contacts for the power path. Keep in mind that you can have voltage to all the right places, but the computer must provide a ground. If there is no ground, the relay will not close the power contacts.


[b[Power Path[/b]
The power path picks up from a fuse link near the starter relay. Fuse links are like fuses, except they are pieces of wire and are made right into the wiring harness. The feed wire from the fuse link (orange/ light blue wire) goes to the fuel pump relay contacts. When the contacts close because the relay energizes, the power flows through the contacts to the fuel pump (light pink/black wire). Notice that pin 19 on the computer is the monitor to make sure the pump has power. The fuel pump has a black wire that supplies the ground to complete the circuit.

Remember that the computer does not source any power to actuators, relays or injectors, but provides the ground necessary to complete the circuit. That means one side of the circuit will always be hot, and the other side will go to ground or below 1 volt as the computer switches on that circuit.

attachment.php


Now that you have the theory of how it works, it’s time to go digging.

All voltage reading are made with one voltmeter lead connected to the metal car body unless otherwise specified

Check for 12 volts at the red wire on the inertia switch. No 12 volts at the inertia switch, the ignition switch is turned off or faulty or there is no power to the EEC (computer) power relay. To be sure look for good 12 volts on the red wire on any fuel injector.
Good 12 volts means the EEC relay is working. No 12 volts and the ECC wiring is at fault.
Look for 12 volts on the red/green wire on the ignition coil: no 12 volts and the ignition switch is faulty, or the fuse link in the ignition power wire has blown. No 12 volts here and the ECC relay won’t close and provide power to the inertia switch. Check the Red/black wire on the inertia switch, it should have 12 volts. No 12 volts there, either the inertia switch is open or has no power to it. Check both sides of the inertia switch: there should be power on the Red wire and Red/Black wire. Power on the Red wire and not on the Red/Black wire means the inertia switch is open. Push the button on the side of it to reset it, and then recheck. Good 12 volts on one side and not on the other means the inertia switch has failed.

Look for 12 volts at the Orange/Lt. Blue wire (power source for fuel pump relay). No voltage or low voltage, bad fuse link, bad wiring, bad ignition switch or ignition switch wiring or connections. There is a mystery connector somewhere under the driver’s side kick panel, between the fuel pump relay and the fuse link.

Turn on the key and jumper the fuel pump test connector to ground as previously described. Look for 12 volts at the Light Pink/Black wire (relay controlled power for the fuel pump). No voltage there means that the relay has failed, or there is a broken wire in the relay control circuit.

Pump wiring: Anytime the ignition switch is in the Run position and the test point is jumpered to ground, there should be at least 12 volts present on the black/pink wire. With power off, check the pump ground: you should see less than 1 ohm between the black wire and chassis ground.

attachment.php


The yellow wire is the fuel tank sender to the fuel quantity gage. The two black wires are grounds. One ground is for the fuel tank sender and the other is the fuel pump. The ground for the fuel pump may be larger gauge wire that the fuel tank sender ground wire.

Make sure that the power is off the circuit before making any resistance checks. If the circuit is powered up, your resistance measurements will be inaccurate.

You should see less than 1 Ohm between the black wire(s) and ground. To get some idea of what a good reading is, short the two meter leads together and observe the reading. It should only be slightly higher when you measure the black wire to ground resistance.

The Tan/Lt Green wire provides a ground path for the relay power. With the test connector jumpered to ground, there should be less than .75 volts. Use a test lamp with one side connected to battery power and the other side to the Tan/Lt Green wire. The test light should glow brightly. No glow and you have a broken wire or bad connection between the test connector and the relay. To test the wiring from the computer, remove the passenger side kick panel and disconnect the computer connector. It has a 10 MM bolt that holds it in place. With the test lamp connected to power, jumper pin 22 to ground and the test lamp should glow. No glow and the wiring between the computer and the fuel pump relay is bad.

Computer: If you got this far and everything else checked out good, the computer is suspect. Remove the test jumper from the ECC test connector located under the hood. Probe computer pin 22 with a safety pin and ground it to chassis. Make sure the computer and everything else is connected. Turn the ignition switch to the Run position and observe the fuel pressure. The pump should run at full pressure.
If it doesn't, the wiring between pin 22 on the computer and the fuel pump relay is bad.
If it does run at full pressure, the computer may have failed.

Keep in mind that the computer only runs the fuel pump for about 2-3 seconds when you turn the key to the Run position. This can sometimes fool you into thinking the computer has died. Connect one lead of the test light to power and the other lead to computer pin 22 with a safety pin. With the ignition switch Off, jumper the computer into self test mode like you are going to dump the codes. Turn the ignition switch to the Run position. The light will flicker when the computer does the self test routine. A flickering light is a good computer. No flickering light is a bad computer.
Remove the test jumper from the ECC test connector located under the hood.

Fuel pump runs continuously: The fuel pump relay contacts are stuck together or the Tan/Lt Green wire has shorted to ground. In extreme ghetto cases, the pump relay may have been bypassed. Remove the fuel pump relay from its socket. Then disconnect the computer and use an ohmmeter to check out the resistance between the Tan/Lt Green wire and ground. You should see more than 10 K Ohms (10,000 ohms) or an infinite open circuit. Be sure that the test connector isn’t jumpered to ground.
If the wiring checks out good, then the computer is the likely culprit.

Prior to replacing the computer, check the computer power ground. The computer has its own dedicated power ground that comes off the ground pigtail on the battery ground wire. Due to it's proximity to the battery, it may become corroded by acid fumes from the battery. It is a black cylinder about 2 1/2" long by 1" diameter with a black/lt green wire. You'll find it up next to the starter solenoid where the wire goes into the wiring harness

If all of the checks have worked OK to this point, then the computer is bad. The computers are very reliable and not prone to failure unless there has been significant electrical trauma to the car. Things like lightning strikes and putting the battery in backwards or connecting jumper cables backwards are about the only thing that kills the computer.

See the following website for some help from Tmoss (diagram designer) &
Stang&2Birds (website host)

http://www.veryuseful.com/mustang/tech/engine/images/IgnitionSwitchWiring.gif

http://www.veryuseful.com/mustang/tech/engine/images/fuel-alt-links-ign-ac.gif

http://www.veryuseful.com/mustang/tech/engine/images/88-91eecPinout.gif
 

Attachments

  • Underhoodpictures007-01.jpg
    Underhoodpictures007-01.jpg
    60.1 KB · Views: 311
  • Underhoodpictures010.jpg
    Underhoodpictures010.jpg
    103.7 KB · Views: 405
This write up is extremely helpful. So I was looking at the fuel pump relay and the orange/ green wire is disconnected and a completely different wire is run. I asked the last mechanic who worked on it and he said he had to run it hot. I'm not sure what that means but I'm pretty sure this is where my problem is. My fuel pump runs continuously with the key on and I replaced the relay. Am I going to have to reconnect the orange wire? The mechanic that did the work doesn't speak English so I can't really communicate with him.
 
The tan/lt green wire is used by the computer to turn the fuel pump on. It provides a ground which completes the circuit. Sometimes the computer's fuel pump control circuit goes bad and the fix is to incorrectly wire the relay by wiring the computer side of the relay to ground.

Since the "mechanic" incorrectly wired the relay, there is also the chance that he may have done more that incorrectly wire that one connection from the relay to the computer. Beware that you don't become a victim of his efforts, and avoid dealing with him if possible.
 
Update one of the wires from the computer was not getting enough volts so the car wasn't turning on. Another local mechanic ran that wore to the ignition switch wire and now the car runs perfect.

Are you a resident of the USA or somewhere else? I have helped people from several different nations, and am always glad to help.
The quality of the mechanic work you are receiving makes me wonder about the education & training of the mechanics you are dealing with.
 
I am from new Mexico. I just can't seem to find a good mechanic to help out with the problems I can't figure out. So far the car is running good but I'm not sure if there will be any problems in the future.
 
Welcome to Stangnet, we are an international community of Mustang enthusiasts.

There is another fellow, Luis who lives in Mexico City who posts here from time to time. I imagine that he has had some similar experiences to what you have experienced.
 
Thank you for the greeting I'm glad to be apart of the community. I am actually from the United States, New Mexico next to Arizona and Texas. I grew up with mustangs and just learned how to work on vehicles from my family (mostly Chevy guys) but I really appreciate all the help I have received so far.