A9L Not Commanding Timing?

2ndlaw

Member
Sep 25, 2019
5
1
13
62
Tucson, AZ
First, I want to thank the administrators for moderating an excellent forum. I’ve been building my car over the last 4 years and now that I’m close to having it back on the road, it’s been a very useful idea generator.

I have a heavily modified 1965 Mustang that I’ve owned since 1989. My car has a junkyard harness from a 90 Mustang and runs an A9L computer to control a 347. It runs an E cam, Edelbrock Performer RPM heads, Trick Flow Track Heat intake, 75 mm throttle body, 30 lb/in injectors, and 10.5:1 compression. The trans is a T5 and it runs a 4:11 geared 9 inch with a TruTrac. It was built like this in 2009 and was a strong runner until an unfortunate accident in 2015 necessitated a comprehensive rebuild. The car is street driven, but is mainly used for autocross.

I’m having an intermittent problem that I’ve been working for many weeks where she sometimes refuses to rev past 2500 RPM. When this happens the car will cruise along just fine at low RPM. This is sometimes accompanied by the tach needle fluttering, or the tach not working at all. On a recent test drive she was running strong, but when I rolled up to a stop sign I could tell something had changed. The idle speed was noticeably lower and the tach was fluttering erratically. I limped home keeping the revs below 2000. I’ve been through the entire harness several times and have good fuel and spark. It has a brand new ATI balancer and the 6AL was gone through by MSD. I had been running timing conservatively set at 10-14* BTDC, but began to suspect that the computer was no longer reliably commanding timing. To test this, I locked the timing out at 26* BTDC (SPOUT removed). Since then, I’ve taken her out for several test drives and she has come alive. The power is good; she’ll break the 305 RE-71Rs loose at 30 mph in second gear, and the tach has been working. The car has never thrown any ignition or fuel related codes. My conclusion is that the A9L must have been damaged in the accident. Is this adding up? Timing locked out at 26 is not a long term solution.

I’ve been reading about the MS2PNP and it seems that it has more than enough capability to run my NA setup - any thoughts? Is there a tune available that will get my 347 running?

My apologies for the long post; thanks for reading.
 
  • Sponsors(?)


Deydey88

New Member
Sep 25, 2019
3
0
1
28
Costa Mesa, Ca
I would get it professionally dyno tuned before i even put my foot in it. It will never run how you want it to until then. Sounds to me like its the maf/injector calibration. The maf sensor is very critical to an efi system. Even as simply changeing the charge/intake tube size/direction can throw it off. The A9L wont understand an injector unless its a 19lb or if your have a maf tuned to your injector size. The engine is getting more fuel then the computer thinks its commanding. Even those pro-m and c&l mafs are junk. I got a ford lightning maf from summit, hopped on the dyno, got tuned and its was straight bliss when i left. I believe they can handle up to 600horse. Before it was not a smooth ride with a pro-m calibrated bs, but it did pull non the less just not to its full potential. I hope I can be of help.
 

jrichker

StangNet's favorite TOOL
SN Certified Technician
Mar 10, 2000
27,341
2,679
234
75
Dublin GA
lowendmac.com
What sort of codes have you been getting? Small clues can help you find intermittent problems.
The SPOUT signal on the TFI module is what commands the computer to advance the spark timing. Intermittent problems with the TFI module or SPOUT circuit could be the cause of your problems. For that reason I am including the Code 18 SPOUT test path.

Code 18 - SPOUT out or wiring fault - look for short to ground in SPOUT wiring going
back to the computer. Possible bad TFI or defective 22 K resistor in the IDM wiring

Revised 24 June 2019 to add comment about the need of thermal paste on TFI mounting surface.

Use a timing light to check the timing: remove the SPOUT and observe that the timing retards at least 4 degrees. Put the SPOUT back in place and observe that the spark advances at least 4 degrees.
This code can disable spark advance and reduce power and fuel economy.

Remove the passenger side kick panel and disconnect the computer connector.
It takes a 10 MM socket to remove the bolt that holds the connector in place..
Disconnect the TFI module connector from the TFI and the measure the resistance between the yellow/lt green wire and ground.
You should see greater than 100 K (100000) ohms.
Check the resistance from Pin 4 on the computer connector (dark green/yellow) and the dark green/yellow wire on the TFI connector. You should see 20-24 K Ohms (20,000-24,0000 ohms).


Resistor location: A big thanks to liljoe07 for this information:

Check over by the brake booster. Its not in the harness on the TFI, its on the main part of the harness over by the plugs that connect to the dash harness. About 6" or so from that, going back toward the EEC.

If I remember right, the resistor is covered in a shrink tubing that is sealed to the wires. So, you won’t be able see any markings. The shrink tubing is labeled though. It's a 22kohm 1/2 watt resistor.

Here is the location.



Next measure the resistance between the yellow/lt green wire on the TFI module connector and Pin 36 on the computer connector. With the SPOUT plug in place, you should see less than 2 ohms.

The following is a view from the computer side of the computer connector.
eec-iv-computer-connector-for-5-0-mustang-gif.gif


This diagram is the wire side of the computer connector.
a9x-series-computer-connector-wire-side-view-gif.gif


Diagram courtesy of Tmoss & Stang&2birds

88-91_5.0_EEC_Wiring_Diagram.gif


If you replace the or remove the TFI, clean the mounting surface off with alcohol and apply a fresh coat of Thermal paste to the TFI mounting surface. Fail to do this and the TFI will quit working once the engine warms up.
 

a91what

SendMeUrDataLog
Mod Dude
Apr 6, 2011
9,998
6,166
204
31
Hillsborough county
The ms2pnp can do what you want and much more, however if the car runs well with the timing locked then I would figure that issue out before moving forward. Simple test would be to give the ECU the timing control back and see if the timing changes with rpm, if it does then it's not an issue and I would look elsewhere.. if the car ran good for 6 years with this combination then I doubt the maf is wrong for the injector size.
 

Decipha

Active Member
Aug 22, 2007
215
37
39
New Orleans, LA
www.efidynotuning.com
the most likely cause of your issue is either a bad pip in the distributor or a bad tfi module

be sure you replace the ecu relay as well - that is the very first step in diagnosing any ecu related issues regardless.
 

General karthief

wonder how much it would cost to ship you a pair
Mod Dude
Aug 25, 2016
18,589
6,107
193
polk county florida
Man, those tfi's and pip's get a bad rap around here, they seem to be the most common issue with these efi systems. Not say'n you should throw money at it without doing the diagnostic work, just an observation.
a dyno session in this case would be wasted money too, jmo.
i've hung around here and with a91what and his ms stuff long enough to realize that it's like a dyno in a box. If I were swapping a efi system into a classic car that is, in my opinion, the way to go.
 

90sickfox

Wasn't a pretty sight...and I've got big hands
SN Certified Technician
Mar 2, 2015
5,560
4,683
203
43
MSPNP2 is a great ECU. A91what has all the knowledge needed to help get it up and running right. He's helped me tremendously.

I second that the pip may be your issue....especially if you have an MSD distributor. Remove the cap and look down below the rotor button. Right above where the TFI plugs in you'll see a sensor. That thing should look like good reasonably clean plastic. If it looks powdery then it has gone bad. I don't know what causes them to turn into this white powdery substance but I've replaced a bunch of them...stock...and MSD. Always replace with a motorcraft one if your local parts store has them. The distributor gear has to come off to replace it.
 

2ndlaw

Member
Sep 25, 2019
5
1
13
62
Tucson, AZ
Thanks for the suggestions.

On my original set-up I used a Pro-M MAF calibrated for cold air and 30 lb injectors. As I said, she ran very well with before the accident. For good measure I sent it to Pro-M for recalibration.

I’ve already replaced the PIP. Guess I now have a known good spare. The wiring to the TFI passed all voltage tests. In addition, I have 2 spare TFI modules. All 3 TFIs have passed all of the resistance tests . I’ve tried 2 of them in the car and have had the intermittent problem with both. For good measure, I’ve remote mounted the TFI. I had bad fuel pump and EEC relays, but they’ve both been replaced.

I’ll be checking the SPOUT circuit and the IDM circuit resistor.

I’ve run codes several times using an Innova scanner. The KOER tests were all run with the SPOUT in place. Here are results:

KOEO
35 EVP/PFE voltage high
67 neutral pressure switch failure
81 air divertor solenoid fault
82 air divertor solenoid fault
85 canister purge solenoid failure
84 EGR vacuum regulator circuit failure

KOER #1
6 cylinder count
13 rpm at idle out of range/low
41 HEGO sensor voltage low/system lean
91 HEGO sensor voltage low/system lean
35 rpm too low for EGR test
23 TP sensor out of range
36 system indicates lean at idle
36 insufficient rpm increase during speed control test

KOER #2
NA cylinder count
52 PSP circuit open
1 ??
57 AXOD NPS circuit open
51 ECT sensor out of range/open
92 HEGO sensor voltage high/system rich
59 low speed fuel pump circuit failure

KOER #3
NA cylinder count
23 TP sensor out of range

KOER #4
NA cylinder count
24 ACT out of range
82 integrated relay control module
12 RPM high
69 AXOD pressure switch
 

jrichker

StangNet's favorite TOOL
SN Certified Technician
Mar 10, 2000
27,341
2,679
234
75
Dublin GA
lowendmac.com
@2ndlaw


Code 35 EVR - EVP sensor signal is/was high – Bad sensor, or possible missing ground for EVR circuit. With the power off, measure the resistance between the black/white wire and battery ground. You should see less than 1 ohm. Check the same black /white wire on the TPS and MAP sensor. More than 1 ohm there and the wire is probably broken in the harness between the engine and the computer. The 10 pin connectors pass the black/white wire back to the computer, and can cause problems.

See the following website for some help from Tmoss (diagram designer) & Stang&2Birds (website host)

http://www.veryuseful.com/mustang/tech/engine/images/88-91eecPinout.gif

See the graphic for the 10 pin connector circuit layout.
68512.jpg


Code 67
Revised 18-Mar-2017 to include warning about the necessity of having a 5 speed O2 Sensor wiring harness when bypassing the wiring for test purposes

Cause of problem:
Clutch not depressed (5 speed) or car not in neutral (5 speed and auto) or not in park (auto) or A/C in On position when codes where dumped. Possible neutral safety switch or wiring problem. This code will prevent you from running the Key On Engine On tests.

External evidence from other sources claims that a code 67 can cause an idle surge condition. Do try to find and fix any issues with the switch and wiring if you get a code 67.

What the NSS (Neutral Safety Switch) does:
5 speed transmission: It has no connection with the starter, and the engine can be cranked without it being connected.
Auto transmission: It is the safety interlock that prevents the starter from cranking the engine with the transmission in gear.
What it does for both 5 speed and auto transmission cars:
The computer wants to make sure the A/C is off due to the added load on the engine for the engine running computer diagnostic tests. It also checks to see that the transmission is in Neutral (5 speed and auto transmission) and the clutch depressed (T5, T56, Tremec 3550 & TKO)). This prevents the diagnostics from being run when the car is driven. Key On Engine Running test mode takes the throttle control away from the driver for several tests. This could prove hazardous if the computer was jumpered into test mode and then driven.

The following is for 5 speed cars only. Do not do this unless you are sure that you have a 5 speed O2 Sensor harness!!!! Smoke, sparks and expensive pain in the wallet may ensue if you don’t.
The NSS code 67 can be bypassed for testing. You will need to temporarily ground computer pin 30 to the chassis. Computer pin 30 uses a Lt blue/yellow wire. Remove the passenger side kick panel and then remove the plastic cover from the computer wiring connector. Use a safety pin to probe the connector from the rear. Jumper the safety pin to the ground near the computer.
Be sure to remove the jumper BEFORE attempting to drive the car!!!



Code 81 – Secondary Air Injection Diverter Solenoid failure AM2. The solenoid valve located on the back side of the passenger side wheel well is not functional. Possible bad wiring, bad connections, missing or defective solenoid valve. Check the solenoid valve for +12 volts at the Red wire and look for the Lt Green/Black wire to switch from +12 volts to 1 volt or less. The computer controls the valve by providing a ground path on the LT Green/Black wire for the solenoid valve.

With the with the ignition on, look for 12 volts on the red wire on the solenoid connector. No 12 volts and you have wiring problems.

With the engine running, stick a safety pin in the LT Green/Black wire for the solenoid valve & ground it. That should turn the solenoid on and cause air to flow out the port that goes to the pipe connected to the cats. If it doesn't, the valve is bad. If it does cause the airflow to switch, the computer or wiring going to the computer is not signaling the solenoid valve to open.

Putting the computer into self test mode will cause the solenoid valve to toggle. If you listen carefully, you may hear it change states.
Code 81 – Secondary Air Injection Diverter Solenoid failure AM2. The solenoid valve located on the back side of the passenger side wheel well is not functional. Possible bad wiring, bad connections, missing or defective solenoid valve. Check the solenoid valve for +12 volts at the Red wire and look for the Lt Green/Black wire to switch from +12 volts to 1 volt or less. The computer controls the valve by providing a ground path on the LT Green/Black wire for the solenoid valve.

With the with the ignition on, look for 12 volts on the red wire on the solenoid connector. No 12 volts and you have wiring problems.

With the engine running, stick a safety pin in the LT Green/Black wire for the solenoid valve & ground it. That should turn the solenoid on and cause air to flow out the port that goes to the pipe connected to the cats. If it doesn't, the valve is bad. If it does cause the airflow to switch, the computer or wiring going to the computer is not signaling the solenoid valve to open.

Putting the computer into self test mode will cause the solenoid valve to toggle. If you listen carefully, you may hear it change states.

Code 82 – Secondary Air Injection Diverter Solenoid failure AM1. Possible bad wiring, bad connections, missing or defective solenoid valve. Check the solenoid valve for +12 volts at the Red wire and look for the Red/White wire to switch from +12 volts to 1 volt or less. The computer controls the valve by providing a ground path on the Red/White wire for the solenoid valve

With the engine running, stick a safety pin in the Red/White wire for the solenoid valve & ground it. That should turn the solenoid on and cause air to flow out the port that goes to the pipe connected to the heads. If it doesn't, the valve is bad. If it does cause the airflow to switch, the computer or wiring going to the computer is not signaling the solenoid valve to open.

Both 81 & 82 codes usually mean that some uneducated person removed the solenoid control valves for the Thermactor Air system in an attempt to make the car faster. It doesn't work that way: no working control valves can cause the cat converters to choke and clog. If you do not have cat converters on the car, you can ignore the 81 & 82 codes.

Code 84 EGR Vacuum Regulator failure – Broken vacuum lines, no +12 volts, regulator coil open circuit, missing EGR vacuum regulator. The EVR regulates vacuum to the EGR valve to maintain the correct amount of vacuum. The solenoid coil should measure 20-70 Ohms resistance. The regulator has a vacuum feed on the bottom which draws from the intake manifold. The other vacuum line is regulated vacuum going to the EGR valve. One side of the EVR electrical circuit is +12 volts anytime the ignition switch is in the run position. The other side of the electrical circuit is the ground path and is controlled by the computer. The computer switches the ground on and off to control the regulator solenoid.

Code 85 CANP solenoid - The Carbon Canister solenoid is inoperative or missing.

Revised 11 –Jan_2015 to add warning about vacuum leaks due to deteriorated hose or missing caps on vacuum lines when the solenoid is removed.

Check vacuum lines for leaks and cracks. Check electrical wiring for loose connections, damaged wiring and insulation. Check solenoid valve operation by grounding the gray/yellow wire to the solenoid and blowing through it.
The computer provides the ground for the solenoid. The red wire to the solenoid is always energized any time the ignition switch is in the run position.

If you disconnected the carbon canister and failed to properly cap the vacuum line coming from under the upper intake manifold, you will have problems. You will also have problems if the remaining hose coming from under the upper intake manifold or caps for the vacuum line are sucking air.

Charcoal canister plumbing - one 3/8" tube from the bottom of the upper manifold to the rubber hose. Rubber hose connects to one side of the canister solenoid valve. Other side of the solenoid valve connects to one side of the canister. The other side of the canister connects to a rubber hose that connects to a line that goes all the way back to the gas tank. There is an electrical connector coming from the passenger side injector harness near #1 injector that plugs into the canister solenoid valve. It's purpose is to vent the gas tank. The solenoid valve opens at cruse to provide some extra fuel. The canister is normally mounted on the passenger side frame rail near the smog pump pulley.

Connecting the gas tank vent line directly to the intake manifold will result in fuel vapor being constantly sucked into the intake manifold. There is unmetered fuel that the computer cannot adjust for. The result is poor idle and poor fuel economy.



It does not weigh but a pound or so and helps richen up the cruse mixture. It draws no HP & keeps the car from smelling like gasoline in a closed garage. So with all these good things and no bad ones, why not hook it up & use it?


The purge valve solenoid connector is a dangling wire that is near the ECT sensor and oil filler on the passenger side rocker cover. The actual solenoid valve is down next to the carbon canister. There is about 12"-16" of wire that runs parallel to the canister vent hose that comes off the bottom side of the upper intake manifold. That hose connects one port of the solenoid valve; the other port connects to the carbon canister.

The purge valve solenoid should be available at your local auto parts store.

Purge valve solenoid:



The carbon canister is normally mounted on the passenger side frame rail near the smog pump pulley.
Carbon Canister:
903_AIRTEX%20_pct_2F%20WELLS_7310014_1.jpg


Engine running codes...

6 cylinder count - an oddity in the computer program that sometimes appears, it can be disregarded

Code 13 &415 - Key on Engine off - ISC did not respond properly (extends to touch throttle then retracts for KOEO) – ISC

Key on Engine running - Idle Speed Control motor or Air Bypass not controlling idle properly (generally idle too high)

If your idle is above 725 RPM, the computer will set this code. Normal idle speed is 650-725 RPM. Higher than that means that someone has mechanically set the idle speed by use of the idle speed screw, and has effectively disabled to computer’s ability to control idle speed.
.
Code 41 or 91. Or 43 Three digit code 172 or 176 - O2 sensor indicates system lean. Look for a vacuum leak or failing O2 sensor.

Revised 01 Sep 2019 1.) To emphasize do not attempt to measure the O2 sensor resistance. Disconnect the O2 sensor from the wiring before doing any resistance checking of the sensor to computer wiring.

Code 41 is the passenger side sensor, as viewed from the driver's seat.
Code 91 is the driver side sensor, as viewed from the driver's seat.

Code 172 is the passenger side sensor as viewed from the driver's seat.
Code 176 is the driver side sensor, as viewed from the driver's seat.

Code 43 is not side specific according to the Probst Ford Fuel injection book.

The computer sees a lean mixture signal coming from the O2 sensors and tries to compensate by adding more fuel. Many times the end result is an engine that runs pig rich and stinks of unburned fuel.

The following is a Quote from Charles O. Probst, Ford fuel Injection & Electronic Engine control:

"When the mixture is lean, the exhaust gas has oxygen, about the same amount as the ambient air. So the sensor will generate less than 400 Millivolts. Remember lean = less voltage.
When the mixture is rich, there's less oxygen in the exhaust than in the ambient air , so voltage is generated between the two sides of the tip. The voltage is greater than 600 millivolts. Remember rich = more voltage.
Here's a tip: the newer the sensor, the more the voltage changes, swinging from as low as 0.1 volt to as much as 0.9 volt. As an oxygen sensor ages, the voltage changes get smaller and slower - the voltage change lags behind the change in exhaust gas oxygen.

Because the oxygen sensor generates its own voltage, never apply voltage and never measure resistance of the O2 sensor. Before checking the O2 sensor circuit wiring resistance, disconnect the O2 sensor from the rest of the circuit wiring. To measure voltage signals, use an analog voltmeter with a high input impedance, at least 10 megohms. Remember, a digital voltmeter will average a changing voltage. End Quote

Testing the O2 sensors 87-93 5.0 Mustangs

Measuring the O2 sensor voltage at the computer will give you a good idea of how well they are working. You'll have to pull the passenger side kick panel off to gain access to the computer connector. Remove the plastic wiring cover to get to the back side of the wiring. Use a safety pin or paper clip to probe the connections from the rear.


Disconnect the O2 sensor from the harness and use the body side O2 sensor harness as the starting point for testing. Do not measure the resistance of the O2 sensor, you may damage it. Resistance measurements for the O2 sensor harness are made with one meter lead on the O2 sensor harness and the other meter lead on the computer wire or pin for the O2 sensor.
Computer wiring harness connector, computer side.
88243.gif


Backside view of the computer wiring connector:
71316.gif



87-90 5.0 Mustangs:
Computer pin 43 Dark blue/Lt green – LH O2 sensor
Computer pin 29 Dark Green/Pink – RH O2 sensor

The computer pins are 29 (RH O2 with a dark green/pink wire) and 43 (LH O2 with a dark blue/lt green wire). Use the ground next to the computer to ground the voltmeter. The O2 sensor voltage should switch between .2-.9 volt at idle.


91-93 5.0 Mustangs:
Computer pin 43 Red/Black – LH O2 sensor
Computer pin 29 Gray/Lt blue – RH O2 sensor

The computer pins are 29 (RH O2 with a Gray/Lt blue wire) and 43 (LH O2 with a Red/Black wire). Use the ground next to the computer to ground the voltmeter. The O2 sensor voltage should switch between .2-.9 volt at idle.


94-95 5.0 Mustangs; note that the 94-95 uses a 4 wire O2 sensor.
The computer pins are 29 (LH O2 with a red/black wire) and 27 (RH O2 with a gray/lt blue wire). Use pin 32 (gray/red wire) to ground the voltmeter. . The O2 sensor voltage should switch between .2-.9 volt at idle.


Note that all resistance tests must be done with power off. Measuring resistance with a circuit powered on will give false readings and possibly damage the meter. Do not attempt to measure the resistance of the O2 sensors, it may damage them.

Testing the O2 sensor wiring harness
Most of the common multimeters have a resistance scale. Be sure the O2 sensors are disconnected and measure the resistance from the O2 sensor body harness to the pins on the computer. Using the Low Ohms range (usually 200 Ohms) you should see less than 1.5 Ohms.



87-90 5.0 Mustangs:
Computer pin 43 Dark blue/Lt green – LH O2 sensor
Computer pin 29 Dark Green/Pink – RH O2 sensor
Disconnect the connector from the O2 sensor and measure the resistance:
From the Dark blue/Lt green wire in the LH O2 sensor harness and the Dark blue/Lt green wire on the computer pin 43
From the Dark Green/Pink wire on the RH O2 sensor harness and the Dark Green/Pink wire on the computer pin 29


91-93 5.0 Mustangs:
Computer pin 43 Red/Black – LH O2 sensor
Computer pin 29 Gray/Lt blue – RH O2 sensor
Disconnect the connector from the O2 sensor and measure the resistance:
From the Red/Black wire in the LH O2 sensor harness and the Red/Black wire on the computer pin 43
From the Gray/Lt blue wire on the RH O2 sensor harness and the Gray/Lt blue wire on the computer pin 29

94-95 5.0 Mustangs:
Computer pin 29 Red/Black – LH O2 sensor
Computer pin 27 Gray/Lt blue – RH O2 sensor
From the Red/Black wire in the LH O2 sensor harness and the Red/Black wire on the computer pin 29
From the Dark Green/Pink Gray/Lt blue wire on the RH O2 sensor harness and the Gray/Lt blue wire on the computer pin 27


There is a connector between the body harness and the O2 sensor harness. Make sure the connectors are mated together, the contacts and wiring are not damaged, and the contacts are clean and not coated with oil.

The O2 sensor ground (orange wire with a ring terminal on it) is in the wiring harness for the fuel injection wiring. I grounded mine to one of the intake manifold bolts

Check the fuel pressure – the fuel pressure is 37-41 PSI with the vacuum disconnected and the engine idling. Fuel pressure out of range can cause the 41 & 91 codes together. It will not cause a single code, only both codes together.

Make sure you have the proper 3 wire O2 sensors. Only the 4 cylinder cars used a 4 wire sensor, which is not compatible with the V8 wiring harness. The exception is that the 94-95 uses a 4 wire O2 sensor.

Replace the O2 sensors in pairs if replacement is indicated. If one is weak or bad, the other one probably isn't far behind.

Code 41 can also be due to carbon plugging the driver’s side Thermactor air crossover tube on the back of the engine. The tube fills up with carbon and does not pass air to the driver’s side head ports. This puts an excess amount of air in the passenger side exhaust and can set the code 41. Remove the tube and clean it out so that both sides get good airflow: this may be more difficult than it sounds. You need something like a mini rotor-rooter to do the job because of the curves in the tube. Something like the outer spiral jacket of a flexible push-pull cable may be the thing that does the trick.

If you get only code 41 and have changed the sensor, look for vacuum leaks. This is especially true if you are having idle problems. The small plastic tubing is very brittle after many years of the heating it receives. Replace the tubing and check the PVC and the hoses connected to it.

Complete computer, actuator & sensor wiring diagram for 94-95 Mustangs


Complete computer, actuator & sensor wiring diagram for 91-93 Mass Air Mustangs


Complete computer, actuator & sensor wiring diagram for 88-90 Mass Air Mustangs


Code 35 EVR - EVP sensor signal is/was high – Bad sensor, or possible missing ground for EVR circuit. With the power off, measure the resistance between the black/white wire and battery ground. You should see less than 1 ohm. Check the same black /white wire on the TPS and MAP sensor. More than 1 ohm there and the wire is probably broken in the harness between the engine and the computer. The 10 pin connectors pass the black/white wire back to the computer, and can cause problems.

If the EVR has been removed, this code may appear.

See the following website for some help from Tmoss (diagram designer) & Stang&2Birds (website host)

http://www.veryuseful.com/mustang/tech/engine/images/88-91eecPinout.gif

See the graphic for the 10 pin connector circuit layout.
68512.jpg



Code 23 - Throttle sensor out of range or throttle set too high - TPS needs to be reset to below 1.2 volts at idle. Keep in mind that when you turn the idle screw to set the idle speed, you change the TPS setting. [/b]


You'll need a Digital Voltmeter (DVM) to do the job.

Wire colors & functions:
Orange/white = 5 volt VREF from the computer
Dark Green/lt green = TPS output to computer
Black/white = Signal ground from computer

Always use the Dark Green/lt green & Black/white wires to set the TPS base voltage.

Do the test with the ignition switch in the Run position without the engine running.

Use the Orange/white & Black white wires to verify the TPS has the correct 5 volts source from the computer.

When you installed the sensor make sure you place it on the peg right and then tighten it down properly. Loosen the back screw a tiny bit so the sensor can pivot and loosen the front screw enough so you can move it just a little in very small increments. I wouldn’t try to adjust it using marks. Set it at .6.v-.9 v.

1. Always adjust the TPS and Idle with the engine at operating temp. Dive it around for a bit if you can and get it nice and warm.

2. When you probe the leads of the TPS, do not use an engine ground, put the ground probe into the lead of the TPS. You should be connecting both meter probes to the TPS and not one to the TPS and the other to ground.

If setting the TPS doesn’t fix the problem, then you may have wiring problems.
With the power off, measure the resistance between the black/white wire and battery ground. You should see less than 2 ohms. Check the same black /white wire on the TPS and MAP/Baro sensor. More than 1 ohm there and the wire is probably broken in the harness between the engine and the computer. The 10 pin connectors pass the black/white wire back to the computer, and can cause problems.

See the following website for some help from Tmoss (diagram designer) & Stang&2Birds (website host)

http://www.veryuseful.com/mustang/tech/engine/images/88-91eecPinout.gif

See the graphic for the 10 pin connector circuit layout.
68512.jpg


36 system indicates lean at idle
36 insufficient rpm increase during speed control test
The Probst manual does not show a valid code 36 for 86-93 5.0 Mustangs

52 PSP circuit open Power steering pressure switch or wiring failure
Not a valid code for 86-93 5.0 Mustangs

57 AXOD NPS circuit open
Not a valid code for 86-93 5.0 Mustangs with a 5 speed manual transmission.

Code 51 Engine Coolant Temperature (ECT) sensor signal is/was too high -

[color= blue]Revised 6-Apr-2017 to add diagrams and resistance check for ECT wiring.[/color]

Possible bad ECT sensor or wiring. Possible missing signal ground – black/wire broken or bad connection. With the power off, measure the resistance between the black/white wire and battery ground. You should see less than 1 ohm. Check the same black /white wire on the TPS and MAP sensor. More than 1 ohm there and the wire is probably broken in the harness between the engine and the computer. The 10 pin connectors pass the black/white wire back to the computer, and can cause problems.

The computer Engine Coolant Temperature sensor has absolutely nothing to do with the temperature gauge. They are different animals. The ECT sensor is normally located it the passenger side front of the engine in the water feed tubes for the heater. It has two wires that connect by a weathertight plastic connector.

The water temperature sender for the temp gauge is located in the driver's side lower intake manifold. It has a single wire that connects by a push on connector on the temp sender.


If you have replaced the ECT sensor and are still having ECT like problem symptoms, check the ECT wiring .


a9x-series-computer-connector-wire-side-view-gif.gif


eec-iv-computer-connector-for-5-0-mustang-gif.gif


See the graphic for the 10 pin connector circuit layout.
salt-pepper-10-pin-connectors-65-jpg.jpg


Check the resistance of the green wire on the ECT connector to the green wire on pin 7 of the computer connector. You should see less that 1 Ω (ohm)

Use Pin 46 on the computer for ground for both ECT & ACT tests to get most accurate readings.

Pin 7 on the computer - ECT signal in. At 176 degrees F it should be .80 volts

Pin 25 on the computer - ACT signal in. At 50 degrees F it should be 3.5 volts. It is a good number if the ACT is mounted in the inlet airbox. If it is mounted in the lower intake manifold, the voltage readings will be lower because of the heat transfer.

50 degrees F = 3.52 v
68 degrees F = 3.02 v
86 degrees F = 2.62 v
104 degrees F = 2.16 v
122 degrees F = 1.72 v
140 degrees F = 1.35 v
158 degrees F = 1.04 v
176 degrees F = .80 v
194 degrees F = .61
212 degrees F = .47 v
230 degrees F = .36 v
248 degrees F = .28 v

Ohms measures at the computer with the computer disconnected, or at the sensor with the sensor disconnected.

50 degrees F = 58.75 K ohms
68 degrees F = 37.30 K ohms
86 degrees F = 27.27 K ohms
104 degrees F = 16.15 K ohms
122 degrees F = 10.97 K ohms
140 degrees F = 7.60 K ohms
158 degrees F = 5.37 K ohms
176 degrees F = 3.84 K ohms
194 degrees F = 2.80 K ohms
212 degrees F = 2.07 K ohms
230 degrees F = 1.55 K ohms
248 degrees F = 1.18 k ohms

Diagram courtesy of Tmoss & Stang&2birds



See the following website for some help from Tmoss (diagram designer) & Stang&2Birds (website host) for help on 88-95 wiring http://www.veryuseful.com/mustang/tech/engine/

http://www.veryuseful.com/mustang/tech/engine/images/IgnitionSwitchWiring.gif

http://www.veryuseful.com/mustang/tech/engine/images/fuel-alt-links-ign-ac.gif

http://www.veryuseful.com/mustang/tech/engine/images/88-91_5.0_EEC_Wiring_Diagram.gif


Code 42 & 92 & 137 & 173 (engine running) System rich - Fuel control or (memory) System was rich for 15 seconds or more (no HO2S switching) - Fuel control. Look for leaking injectors, fuel pressure too high, cylinder(s) not firing due to bad ignition.

Code 42 passenger side sensor, as viewed from the driver's seat
Code 92 is the driver side sensor, as viewed from the driver's seat.

The following is a Quote from Charles O. Probst, Ford fuel Injection & Electronic Engine control:
"When the mixture is lean, the exhaust gas has oxygen, about the same amount as the ambient air. So the sensor will generate less than 400 Millivolts. Remember lean = less voltage.

When the mixture is rich, there's less oxygen in the exhaust than in the ambient air , so voltage is generated between the two sides of the tip. The voltage is greater than 600 millivolts. Remember rich = more voltage.

Here's a tip: the newer the sensor, the more the voltage changes, swinging from as low as 0.1 volt to as much as 0.9 volt. As an oxygen sensor ages, the voltage changes get smaller and slower - the voltage change lags behind the change in exhaust gas oxygen.

Because the oxygen sensor generates its own voltage, never apply voltage and never measure resistance of the sensor circuit. To measure voltage signals, use an analog voltmeter with a high input impedance, at least 10 megohms. Remember, a digital voltmeter will average a changing voltage." End Quote

Testing the O2 sensors 87-93 5.0 Mustangs
Measuring the O2 sensor voltage at the computer will give you a good idea of how well they are working. You'll have to pull the passenger side kick panel off to gain access to the computer connector. Remove the plastic wiring cover to get to the back side of the wiring. Use a safety pin or paper clip to probe the connections from the rear.


Backside view of the computer wiring connector:
a9x-series-computer-connector-wire-side-view-gif.gif


87-90 5.0 Mustangs:
Computer pin 43 Dark blue/Lt green – LH O2 sensor
Computer pin 29 Dark Green/Pink – RH O2 sensor
The computer pins are 29 (LH O2 with a dark green/pink wire) and 43 (RH O2 with a dark blue/pink wire). Use the ground next to the computer to ground the voltmeter. The O2 sensor voltage should switch between .2-.9 volt at idle.

91-93 5.0 Mustangs:
Computer pin 43 Red/Black – LH O2 sensor
Computer pin 29 Gray/Lt blue – RH O2 sensor
The computer pins are 29 (LH O2 with a Gray/Lt blue wire) and 43 (RH O2 with a Red/Black wire). Use the ground next to the computer to ground the voltmeter. The O2 sensor voltage should switch between .2-.9 volt at idle.

Testing the O2 sensors 94-95 5.0 Mustangs
Measuring the O2 sensor voltage at the computer will give you a good idea of how well they are working. You'll have to pull the passenger side kick panel off to gain access to the computer connector. Remove the plastic wiring cover to get to the back side of the wiring. Use a safety pin or paper clip to probe the connections from the rear. The computer pins are 29 (LH O2 with a red/black wire) and 27 (RH O2 with a gray/lt blue wire). Use pin 32 (gray/red wire) to ground the voltmeter. The O2 sensor voltage should switch between .2-.9 volt at idle.


There is a fuse link for the O2 sensor heater power. According to Ranchero50, it is in the wiring near the passenger side hood hinge. Measuring the voltages will give a clue if it has shorted to the O2 sensor signal lead. The O2 sensor voltage should switch between .2-.9 volt at idle.

59 low speed fuel pump circuit failure
Not a valid code for 86-93 5.0 Mustangs with stock fuel injection. There is only a single speed, constant output fuel pump in 86-93 5.0 Mustangs

69 AXOD pressure switch
Not a valid code for 86-93 5.0 Mustangs with a 5 speed manual transmission.

Code 12 &412 -Idle Air Bypass motor not controlling idle properly (generally idle too low) - IAB dirty or not working. Clean the electrical contacts with non flammable brake parts cleaner at the same time.

IAC doesn't work: look for +12 volts at the IAC red wire. Then check for continuity between the white/lt blue wire and pin 21 on the computer. The IAC connector contacts will sometimes corrode and make the IAC not work. The red wire on the IAC is always hot with the engine in run mode. The computer provides a ground for the current for the IAC. It switches the ground on and off, making a square wave with a varying duty cycle. A normal square wave would be on for 50% of the time and off for 50% of the time. When the idle speed is low, the duty cycle increases more than 50% to open the IAC more. When the engine speed is high, it decreases the duty cycle to less than 50% to close the IAC. An old-fashioned dwell meter can be used to check the change: I haven’t tried it personally, but it should work. In theory, it should read ½ scale of whatever range you set it on with a 50% duty cycle. An Oscilloscope is even better if you can find someone who has one and will help.



Recommended procedure for cleaning the IAC/IAB:
Conventional cleaning methods like throttle body cleaner aren’t very effective. The best method is a soak type cleaner used for carburetors. If you are into fixing motorcycles, jet skis, snowmobiles or anything else with a small carburetor, you probably have used the one gallon soak cleaners like Gunk or Berryman. One of the two should be available at your local auto parts store for $22-$29. Take the solenoid off the body and set it aside: the carb cleaner will damage some types of plastic parts. Soak the metal body in the carb cleaner overnight. There is a basket to set the parts in while they are soaking. When you finish soaking overnight, twist the stem of the IAB/IAC that sticks out while the blocker valve is seated. This removes any leftover deposits from the blocker valve seat. Rinse the part off with water and blow it dry with compressed air. The IAC/IAB should seal up nicely now. Once it has dried, try blowing through the bottom hole and it should block the air flow. Reassemble and reinstall to check it out.

Gunk Dip type carb & parts soaker:



Setting the base idle speed:
First of all, the idle needs to be adjusted to where the speed is at or below 600 RPM with the IAC disconnected. If you have a wild cam, you may have to raise this figure 100-150 RPM or so. Then the electrical signal through the IAC can vary the airflow through it under computer control. Remember that the IAC can only add air to increase the base idle speed set by the mechanical adjustment. The 600 RPM base idle speed is what you have after the mechanical adjustment. The IAC increases that speed by supplying more air under computer control to raise the RPM’s to 650-725 RPM’s. This figure will increase if you have a wild cam, and may end up between 800-950 RPM

Remember that changing the mechanical idle speed adjustment changes the TPS setting too.

This isn't the method Ford uses, but it does work. Do not attempt to set the idle speed until you have fixed all the codes and are sure that there are no vacuum leaks.

Disconnect the battery negative terminal and turn the headlights on. Leave the battery negative terminal disconnected for 5 minutes or so. Then turn the headlights off and reconnect the battery. This erases the computer settings that may affect idle performance.

Warm the engine up to operating temperature, place the transmission in neutral, and set the parking brake. Turn off lights, A/C, all unnecessary electrical loads. Disconnect the IAC electrical connector. Remove the SPOUT plug. This will lock the ignition timing so that the computer won't change the spark advance, which changes the idle speed. Note the engine RPM: use the mechanical adjustment screw under the throttle body to raise or lower the RPM until you get the 600 RPM mark +/- 25 RPM. A wild cam may make it necessary to increase the 600 RPM figure to 700 RPM or possibly a little more to get a stable idle speed.
Changing the mechanical adjustment changes the TPS, so you will need to set it.

When you are satisfied with the results, turn off the engine, and re-install the SPOUT and reconnect the IAC. The engine should idle with the range of 650-750 RPM without the A/C on or extra electrical loads. A wild cam may make this figure somewhat higher.

An engine that whose idle speed cannot be set at 600 RPM with the IAC disconnected has mechanical problems. Vacuum leaks are the #1 suspect in this case. A vacuum gauge will help pinpoint both vacuum leaks and improperly adjusted valves. A sticking valve or one adjusted too tight will cause low vacuum and a 5"-8" sweep every time the bad cylinder comes up on compression stroke. An extreme cam can make the 600 RPM set point difficult to set. Contact your cam supplier or manufacturer to get information on idle speed and quality

Bottom line: You have codes 23, 24, and 35 which indicate a missing signal ground in engine mounted fuel injector harness. It could be a bad wiring spice where the engine mounted sensors merge into a single wire that goes to the 10 pin connector or a bad connection in the 10 pin connector.

And no, I didn't copy these code test paths from a book or website somewhere. They are a product of my original work here on Stangnet...
 
Last edited:
  • Like
Reactions: 90sickfox

2ndlaw

Member
Sep 25, 2019
5
1
13
62
Tucson, AZ
Thanks for the reply. I should have mentioned that AM1, AM2, CANP and EGR were deleted from the harness 10 years ago. Is it normal for the computer to return nonsense codes?

I reset the timing to 14* BTDC and replaced the SPOUT. The idle lost perhaps a few hundred rpm and the IAC began whistling loudly. At idle with the SPOUT in, the timing was ca. 25* BTDC. When I revved the engine to ca. 3000 rpm I saw advance to ca. 30* BTDC. I was expecting more of an increase. I'll test her out tomorrow and have a look at the grounds.

With my E cam vacuum at idle is 10-12 in Hg, but when the IAC cycles it drops to 5 in Hg or less.
 

Attachments

  • 20190907_151658.jpg
    20190907_151658.jpg
    222.4 KB · Views: 63

2ndlaw

Member
Sep 25, 2019
5
1
13
62
Tucson, AZ
Today I pried off the upper intake (it was sealed well), removed the injector harness at the 10 pin connectors, and tested every wire for continuity. All wires checked out as good (<2 ohms resistance). With the injection harness reconnected I then checked continuity of every wire in the EEC connector to where they ultimately terminate - all good. As for the IDM circuit, resistance from pin 4 of the EEC connector to termination of the tan-yellow wire at the TFI module was ca. 22K ohms. The SPOUT circuit had <2 ohms resistance from pin 36 of the EEC connector to termination of the yellow-green wire at the TFI module.

I took her out for a couple of test drives. Other than the erratic tach she ran well.

I'm concerned over some of the KOER codes returned - 1, 57, 59, 69. They seem nonsensical. Also, I should have mentioned that after each KOER repairs were attempted and the computer was reset.
 

2ndlaw

Member
Sep 25, 2019
5
1
13
62
Tucson, AZ
I wanted to report that the erratic tach was an unrelated issue. I found a loose ground and now it's working fine. I also had a trans fluid leak which was coming from the VSS, but not leaking from the O-ring. Replacing the VSS chased that leak. After setting the timing to 14* BTDC she is now running very well, and I've had no further instances of power loss, this after numerous test drives. The last KOER gave only the 41/91 codes so I'll need to investigate the HEGO circuits. 20190927_170033.jpg
 
  • Like
Reactions: General karthief