bbk 255 fuel pump

  • Sponsors (?)


A 255lph pump really won’t hurt though....

Excess fuel will just go right back into the tank.

With just a cam, even with a good set of heads, even a 150 pump will suffice.
 
  • Like
Reactions: 1 user
You really only need a 150.

The issue with large pumps is that unless the lines are upgraded you run into issues controlling the pressure due to resistance of the fuel flowing through the narrow lines. Larger diameter lines would help, or a thirsty motor that can actually drink all that fuel. Without that, you might find the fuel pressure higher than 39psi and unable to lower it.

Plus there's also the possibility of cavitation due to really cycling all that fuel through the lines and back to the tank really quickly. That puts air bubbles into the fuel. This can be controlled however by routing the return down to the bottom of the fuel pickup to put it under the level of fuel

Personally, i'd toss it on ebay and buy a Walbro 150 lph.
 
Last edited:
  • Agree
Reactions: 1 user
Copied from the FORD RACING PERFORMANCE PARTS catalog:

PROPERLY SIZING FUEL SYSTEM COMPONENTS


Fuel Pumps
The following information is presented assuming the above information has been taken into consideration regarding BSFC, fuel pressure and specific gravity of the fuel being used. Most fuel pumps for electronic fuel injection are rated for flow at 12 volts @ 40 PSI. Most vehicle charging systems operate anywhere from 13.2v to 14.4v. The more voltage you feed a pump, the faster it spins which, obviously, will put out more fuel. Rating a fuel pump at 12 volts then, should offer a fairly conservative fuel flow rating allowing you to safely determine the pump’s ability to supply an adequate amount of fuel for a particular application.

As previously mentioned, engines actually require a certain WEIGHT of fuel, NOT a certain VOLUME of fuel per horsepower. This can offer a bit of confusion since most fuel pumps are rated by volume, and not by weight. To determine the proper fuel pump required, a few mathematical conversions will need to be performed using the following information. There are 3.785 liters in 1 US Gallon. 1 gallon of gasoline (.72 specific gravity @ 65° F) weighs 6.009 LBS.

To be certain that the fuel pump is not run to its very limit, which could potentially be dangerous to the engine, multiply the final output of the fuel pump by 0.9 to determine the capacity of the fuel pump at 90% output. This should offer plenty of ‘cushion’ as to the overall “horsepower capacity” of the fuel pump.

To determine the overall capacity of a fuel pump rated in liters, use the additional following conversions:
(Liters per Hour) / 3.785 = Gallons
Multiply by 6.009 = LBS/HR
Multiply by 0.9 = Capacity at 90%
Divide by BSFC = Horsepower Capacity
So for a 110 LPH fuel pump:
110 / 3.785 = 29.06 Gallons
29.06 x 6.009 = 174.62 LBS/HR
174.62 x 0.9 = 157 LBS/HR @ 90% Capacity
157 / 0.5 = 314 HP safe naturally aspirated “Horsepower Capacity”

Safe “Horsepower Capacity” @ 40 PSI with 12 Volts
60 Liter Pump = 95 LB/HR X .9 = 86 LB/HR, Safe for 170 naturally aspirated Horsepower
88 Liter Pump = 140 LB/HR X .9 = 126 LB/HR, Safe for 250 naturally aspirated Horsepower
110 Liter Pump = 175 LB/HR X .9 = 157 LB/HR, Safe for 315 naturally aspirated Horsepower
155 Liter Pump = 246 LB/HR X .9 = 221 LB/HR, Safe for 440 naturally aspirated Horsepower
190 Liter Pump = 302 LB/HR X .9 = 271 LB/HR, Safe for 540 naturally aspirated Horsepower
255 Liter Pump = 405 LB/HR X .9 = 364 LB/HR, Safe for 700 naturally aspirated Horsepower

Note: For forced induction engines, the above power levels will be reduced because as the pressure required by the pump increases, the flow decreases. In order to do proper fuel pump sizing, a fuel pump map is required, which shows flow rate versus delivery pressure.

That is, a 255 liter per hour pump at 40 PSI may only supply 200 liters per hour at 58 PSI (40 PSI plus 18 lbs of boost). Additionally, if you use a fuel line that is not large enough, this can result in decreased fuel volume due to the pressure drop across the fuel feed line: 255 LPH at the pump may only result in 225 LPH at the fuel rail.


My Comments:

A lot of people oversize the fuel pump by buying a 255LPH pump thinking that the fuel pump regulator will just pass the excess gas back to the tank. It does, but… Did you ever consider that circulating the fuel around as a 255 LPH pump does will cause the gas to pickup engine heat? What happens to hot gasoline? It boils off or pressurizes the fuel tank! With most of the 5.0 Mustangs having the carbon canister removed or disabled, the car stinks like gas, and the gas mileage drops since the hot fuel evaporates away into the air.