Engine Multiple engine codes

  • Sponsors(?)


TTSaleen05

Member
Sep 7, 2019
115
4
18
32
Louisiana
Well, I used a homemade smoke machine today. Using a mason jar, baby oil, a bicycle pump and charcoal. No vacuum leaks at all, cranked it up and still the cammed idle with the stumbling across the rpm range. I then shut it off to hook up the timing gun, went to crank it up and it wouldn’t start. when it did start it would idle very low roughly then stall. So I pulled the plugs again and they were soaked with FUEL. What the hell....it has new 02 sensors. Ughhh
 

jrichker

StangNet's favorite TOOL
SN Certified Technician
Mar 10, 2000
27,155
2,673
224
73
Dublin GA
Ok so repaired ECU is no longer allowing vacuum to the EGR at idle, I pulled the codes again and got 12, 21 and 26. So I replaced the MAF with a spare one and still no change in the stumbling across the rpm range. Now I didn’t let the car warm up fully before I did the KOER test. But it’s important for me to note that I checked the oil level and it was way above the full mark....again. So I smelled the oil and it smelled like fuel. fuel is leaking into the oil pan...lots of it. I checked the FPR again, no fuel is in the vacuum line. It doesn’t even smell lime fuel. Fuel pressure is steady around 40 psi. i pulled the plugs and they were fouled with fuel. What the hell. It idles like it’s cammed
Clear the stored codes as directed below and then do the test path for code 26 first...



How to clear codes.
Clearing the codes by pressing a button on the scan tool or disconnecting the test jumper used to start the code dump does not erase the “learned settings”. All it does is erase the stored codes in memory.

You must clear the codes anytime you replace any sensor. The following tells you how and is different from the method above
Clear the computer codes by disconnecting the battery negative terminal and turn the headlights on. Turn the headlights off and reconnect the all sensors including the MAF and anything else you may have disconnected. Then reconnect the battery negative cable.. This clears all spurious codes may have been generated while troubleshooting problems. It also clears the adaptive settings that the computer "learns" as it operates. Clearing the codes does not fix the code problems, it just gives you a clean slate to start recording what the computer sees happening.

Run the car for at least 30 minutes of driving and dump the codes again to assure that you have fixed the code problem or sensor problem. This is necessary for the computer to relearn the adaptive settings that the computer uses for proper operation. The engine may run rough at first, but should smooth out as it runs for the 15-20 minute learning period.





Code 12 &412 -Idle Air Bypass motor not controlling idle properly (generally idle too low) - IAB dirty or not working. Clean the electrical contacts with non flammable brake parts cleaner at the same time.

IAC doesn't work: look for +12 volts at the IAC red wire. Then check for continuity between the white/lt blue wire and pin 21 on the computer. The IAC connector contacts will sometimes corrode and make the IAC not work. The red wire on the IAC is always hot with the engine in run mode. The computer provides a ground for the current for the IAC. It switches the ground on and off, making a square wave with a varying duty cycle. A normal square wave would be on for 50% of the time and off for 50% of the time. When the idle speed is low, the duty cycle increases more than 50% to open the IAC more. When the engine speed is high, it decreases the duty cycle to less than 50% to close the IAC. An old-fashioned dwell meter can be used to check the change: I haven’t tried it personally, but it should work. In theory, it should read ½ scale of whatever range you set it on with a 50% duty cycle. An Oscilloscope is even better if you can find someone who has one and will help.



Recommended procedure for cleaning the IAC/IAB:
Conventional cleaning methods like throttle body cleaner aren’t very effective. The best method is a soak type cleaner used for carburetors. If you are into fixing motorcycles, jet skis, snowmobiles or anything else with a small carburetor, you probably have used the one gallon soak cleaners like Gunk or Berryman. One of the two should be available at your local auto parts store for $22-$29. Take the solenoid off the body and set it aside: the carb cleaner will damage some types of plastic parts. Soak the metal body in the carb cleaner overnight. There is a basket to set the parts in while they are soaking. When you finish soaking overnight, twist the stem of the IAB/IAC that sticks out while the blocker valve is seated. This removes any leftover deposits from the blocker valve seat. Rinse the part off with water and blow it dry with compressed air. The IAC/IAB should seal up nicely now. Once it has dried, try blowing through the bottom hole and it should block the air flow. Reassemble and reinstall to check it out.

Gunk Dip type carb & parts soaker:



Setting the base idle speed:
First of all, the idle needs to be adjusted to where the speed is at or below 600 RPM with the IAC disconnected. If you have a wild cam, you may have to raise this figure 100-150 RPM or so. Then the electrical signal through the IAC can vary the airflow through it under computer control. Remember that the IAC can only add air to increase the base idle speed set by the mechanical adjustment. The 600 RPM base idle speed is what you have after the mechanical adjustment. The IAC increases that speed by supplying more air under computer control to raise the RPM’s to 650-725 RPM’s. This figure will increase if you have a wild cam, and may end up between 800-950 RPM

Remember that changing the mechanical idle speed adjustment changes the TPS setting too.

This isn't the method Ford uses, but it does work. Do not attempt to set the idle speed until you have fixed all the codes and are sure that there are no vacuum leaks.

Disconnect the battery negative terminal and turn the headlights on. Leave the battery negative terminal disconnected for 5 minutes or so. Then turn the headlights off and reconnect the battery. This erases the computer settings that may affect idle performance.

Warm the engine up to operating temperature, place the transmission in neutral, and set the parking brake. Turn off lights, A/C, all unnecessary electrical loads. Disconnect the IAC electrical connector. Remove the SPOUT plug. This will lock the ignition timing so that the computer won't change the spark advance, which changes the idle speed. Note the engine RPM: use the mechanical adjustment screw under the throttle body to raise or lower the RPM until you get the 600 RPM mark +/- 25 RPM. A wild cam may make it necessary to increase the 600 RPM figure to 700 RPM or possibly a little more to get a stable idle speed.
Changing the mechanical adjustment changes the TPS, so you will need to set it.

When you are satisfied with the results, turn off the engine, and re-install the SPOUT and reconnect the IAC. The engine should idle with the range of 650-750 RPM without the A/C on or extra electrical loads. A wild cam may make this figure somewhat higher.

An engine that whose idle speed cannot be set at 600 RPM with the IAC disconnected has mechanical problems. Vacuum leaks are the #1 suspect in this case. A vacuum gauge will help pinpoint both vacuum leaks and improperly adjusted valves. A sticking valve or one adjusted too tight will cause low vacuum and a 5"-8" sweep every time the bad cylinder comes up on compression stroke. An extreme cam can make the 600 RPM set point difficult to set. Contact your cam supplier or manufacturer to get information on idle speed and quality





Code 21 or 116 – ECT sensor out of range. Broken or damaged wiring, bad ECT sensor.

[color= blue]Revised 6-Apr-2017 to add diagrams and resistance check for ECT wiring.[/color]

Note that that if the outside air temp is below 50 degrees F that the test for the ECT can be in error. Warm the engine up until you get good hot air from the heater and then dump the codes again.

The computer Engine Coolant Temperature sensor has absolutely nothing to do with the temperature gauge. They are different animals. The ECT sensor is normally located it the passenger side front of the engine in the water feed tubes for the heater. It has two wires that connect by a weathertight plastic connector.

The water temperature sender for the temp gauge is located in the driver's side lower intake manifold. It has a single wire that connects by a push on connector on the temp sender.


If you have replaced the ECT sensor and are still having ECT like problem symptoms, check the ECT wiring .

Computer wiring harness connector, wire side
71316.gif


Computer wiring harness connector, computer side
88243.gif



See the graphic for the 10 pin connector circuit layout.
68512.jpg


Check the resistance of the green wire on the ECT connector to the green wire on pin 7 of the computer connector. You should see less that 1 Ω (ohm)

The ACT & ECT have the same thermistor, so the table values are the same

ACT & ECT test data:

Use Pin 46 on the computer for ground for both ECT & ACT to get most accurate readings.

Pin 7 on the computer - ECT signal in. At 176 degrees F it should be .80 volts

Pin 25 on the computer - ACT signal in. At 50 degrees F it should be 3.5 volts. It is a good number if the ACT is mounted in the inlet airbox. If it is mounted in the lower intake manifold, the voltage readings will be lower because of the heat transfer.


Voltages may be measured across the ECT/ACT by probing the connector from the rear. A pair of safety pins may be helpful in doing this. Use care in doing it so that you don't damage the wiring or connector.

Here's the table :

50 degrees F = 3.52 v
68 degrees F = 3.02 v
86 degrees F = 2.62 v
104 degrees F = 2.16 v
122 degrees F = 1.72 v
140 degrees F = 1.35 v
158 degrees F = 1.04 v
176 degrees F = .80 v
194 degrees F = .61
212 degrees F = .47 v
230 degrees F = .36 v
248 degrees F = .28 v

Ohms measures at the computer with the computer disconnected, or at the sensor with the sensor disconnected.

50 degrees F = 58.75 K ohms
68 degrees F = 37.30 K ohms
86 degrees F = 27.27 K ohms
104 degrees F = 16.15 K ohms
122 degrees F = 10.97 K ohms
140 degrees F = 7.60 K ohms
158 degrees F = 5.37 K ohms
176 degrees F = 3.84 K ohms
194 degrees F = 2.80 K ohms
212 degrees F = 2.07 K ohms
230 degrees F = 1.55 K ohms
248 degrees F = 1.18 k ohms

Diagram courtesy of Tmoss & Stang&2birds



Wiring_Diagram.gif[/

See the following website for some help from Tmoss (diagram designer) & Stang&2Birds
(website host) for help on 88-95 wiring http://www.veryuseful.com/mustang/tech/engine/

Ignition switch wiring

Fuel, alternator, A/C and ignition wiring

Complete computer, actuator & sensor wiring diagram for 88-91 Mass Air Mustangs

Vacuum diagram 89-93 Mustangs

Code 26 - Mass Air Flow out of range – MAF Voltage output too high or too low

Revised Oct 31, 2019 to update wiring and measurement directions

Check for missing +12 volts on this circuit. Check the two links for a wiring diagram to help you find the red wire for computer power relay switched +12 volts. Check for 12 volts between the red and black wires on the MAF heater (usually pins A & B). while the connector is plugged into the MAF. This may require the use of a couple of safety pins to probe the MAF connector from the back side of it.

Computer wiring harness connector, wire side.
71316.gif


Computer wiring harness connector, computer side.
88243.gif



Diagrams courtesy of Tmoss and Stang&2Birds

ECC Diagram for 88-90 5.0 Mustangs
88-91_5.0_EEC_Wiring_Diagram.gif


ECC Diagram for 91-93 5.0 Mustangs
91-93_5.0_EEC_Wiring_Diagram.gif


94-95 Diagram for 94-95 5.0 Mustangs[/b]
94-95_5.0_EEC_Wiring_Diagram.gif



How the MAF works

There are three parts in a MAF: the heater, the sensor element and the amplifier. The heater heats the MAF sensor element causing the resistance to increase. The amplifier buffers the MAF output signal and has a resistor that is laser trimmed to provide an output range compatible with the computer's load tables. Changes in RPM causes the airflow to increase or decrease, changing the voltage output. The increase of air across the MAF sensor element causes it to cool, allowing more voltage to pass and telling the computer to increase the fuel flow. A decrease in airflow causes the MAF sensor element to get warmer, decreasing the voltage and reducing the fuel flow.

Actually, MAF pins C & D float with reference to ground. The signal output of the MAF is a differential amplifier setup. Pins C & D both carry the output signal, but one pin's output is inverted from the other. The difference in signal between C & D is what the computer's input circuit is looking for. The difference in the two outputs helps cancel out electrical noise generated by the ignition system and other components. Since the noise will be of the same polarity, wave shape and magnitude, the differential input of the computer electronically subtracts it from the signal. Then it passes the signal on to an Analog to Digital converter section inside the computer's CPU chip.

The MAF element is secured by 2 screws & has 1 wiring connector. To clean the element, remove it from the MAF housing and spray it down with electronic parts cleaner or non-inflammable brake parts cleaner (same stuff in a bigger can and cheaper too).

Do not use body, engine or chassis ground when making resistance or voltage measurements unless specifically instructed to do so.

89-90 Model cars: Measure the MAF output at pins C & D on the MAF connector (dark blue/orange and tan/light blue) or at pins 50 & 9 on the computer. Be sure to measure the sensor output by measuring across the pins and not between the pins and ground.

91-95 Model cars: Measure the MAF output at pins C & D on the MAF connector light blue/red and tan/light blue) or at pins 50 & 9 on the computer. Be sure to measure the sensor output by measuring across the pins and not between the pins and ground.

MAF output readings: Use the computer connector diagram to help choose the proper pin connection on the computer when measuring the MAF output voltage. Since the car is most likely parked for simplicity’s sake, the idling voltage check can the done with the voltmeter directly stuck in the backside of the MAF connector.

At idle = approximately .6 volt
20 MPH = approximately 1.10 volt
40 MPH = approximately 1.70 volt
60 MPH = approximately 2.10 volt

If the output of the MAF C&D pins exceeds the specs above, there are two possible problems:

1.) The MAF sensor is defective and needs to be replaced.
2.) The MAF sensor is installed in a a different housing than the one it was designed for. The sensor is designed to work with a specific MAF part number or model MAF housing.

Check the resistance of the MAF signal wiring
For the next 2 checks make your measurement with the MAF disconnected from the wiring harness.

Pin D on the MAF wiring harness and pin 50 on the computer (dark blue/orange wire) should be less than 2 ohms. Pin C on the MAF wiring harness and pin 9 on the computer (tan/light blue wire) should be less than 2 ohms.

There should be a minimum of 10K ohms between either pin C or D on the MAF wiring connector and pins A or B.

Reconnect the MAF to the wiring harness and proceed to the next section.

See the following website for some help from Tmoss (diagram designer) & Stang&2Birds (website host) for help on 88-95 wiring http://www.veryuseful.com/mustang/tech/engine/

Ignition switch wiring
http://www.veryuseful.com/mustang/tech/engine/images/IgnitionSwitchWiring.gif

Fuel pump, alternator, ignition & A/C wiring
http://www.veryuseful.com/mustang/tech/engine/images/fuel-alt-links-ign-ac.gif

Computer, actuator & sensor wiring
http://www.veryuseful.com/mustang/tech/engine/images/88-91_5.0_EEC_Wiring_Diagram.gif

Fuse panel layout
http://www.veryuseful.com/mustang/tech/engine/images/MustangFuseBox.gif

Vacuum routing
http://www.veryuseful.com/mustang/tech/engine/images/mustangFoxFordVacuumDiagram.jpg
 
Last edited:

General karthief

wonder how much it would cost to ship you a pair
Mod Dude
Aug 25, 2016
14,089
4,430
193
polk county florida
I doubt it. But I can't speak for jrichker, I think you have a ignition problem or a timing problem.
you can pull up the fuel rail with the injectors connected and turn the ignition on to see if they are leaking.
 

TTSaleen05

Member
Sep 7, 2019
115
4
18
32
Louisiana
I planned on removing the intake today but the weather is poor here for the neck to few days.

As far as the FPR, there is no remnants of fuel in the vac line. Fuel pressure with the vac line on is 40psi
 

TTSaleen05

Member
Sep 7, 2019
115
4
18
32
Louisiana
mines is definitely higher that 34 with vac line on at idle, I believe I posted a video. Also I installed the motorcraft platinum plugs and to my knowledge, they’re gapped at .44. Do I need to change that.
 

General karthief

wonder how much it would cost to ship you a pair
Mod Dude
Aug 25, 2016
14,089
4,430
193
polk county florida
Yeah, I would get that fuel pressure down to 34 ish. It's all about the little things. The plugs likely are good. You really don't need anything special when it comes to plugs (at least that's the consensus here) good ole copper plugs work just fine.
 

TTSaleen05

Member
Sep 7, 2019
115
4
18
32
Louisiana
I don’t believe so, its stock as far as i know. Is there supposed to be a ground wire that’s connected to the intake manifold? Not the orange HEGO ground that goes to the back of the head. But a different one?
 

TTSaleen05

Member
Sep 7, 2019
115
4
18
32
Louisiana
OK just checking, I went out and purchased a new distributor, fuel pressure regulator, ignition switch, and ignition coil. If none of this helps, I would just bring it back to the auto parts store. I’m headed over to the car now, I’m going to inspect inside the cylinder walls to see if there’s any fuel still in there. I also re-cleanEd the plugs. Also I will re-check the grounds, all my grounds are hooked up but I’m going to unbolt them and then both them back down and make sure they’re clean and tight.
 
  • Like
Reactions: General karthief

TTSaleen05

Member
Sep 7, 2019
115
4
18
32
Louisiana
Ok so I put fresh plugs in, along with a new distributor, ignition switch, new coil. stabbed The distributor at 10 degrees. It fired up and sounded good, I was so happy. About 30 seconds later, it started sputtering then shut off. I pulled the plugs and they were fouled with fuel...wet. I’m am going to drain the oil because the level is pretty high from the fuel getting in the oil pan from it running so rich. I took the upper intake off to gain access to the injectors. fuel pressure is holding when the car is off, it takes about an hour or so for it to bleed off. None seem to be stuck open or leaking. Now earlier when I posted the codes, I pulled them when the engine was cold. It has new 02 sensors, new capacitors on the ECU. so at this point, Its Starting to become depressing.
 

jrichker

StangNet's favorite TOOL
SN Certified Technician
Mar 10, 2000
27,155
2,673
224
73
Dublin GA
Ok so I put fresh plugs in, along with a new distributor, ignition switch, new coil. stabbed The distributor at 10 degrees. It fired up and sounded good, I was so happy. About 30 seconds later, it started sputtering then shut off. I pulled the plugs and they were fouled with fuel...wet. I’m am going to drain the oil because the level is pretty high from the fuel getting in the oil pan from it running so rich. I took the upper intake off to gain access to the injectors. fuel pressure is holding when the car is off, it takes about an hour or so for it to bleed off. None seem to be stuck open or leaking. Now earlier when I posted the codes, I pulled them when the engine was cold. It has new 02 sensors, new capacitors on the ECU. so at this point, Its Starting to become depressing.
You got a 26 code for the MAF - did you do the test path that I posted for the 26 code? In are some simple checks with a good quality voltmeter to determine if the MAF output voltages are good.


Code 26 - Mass Air Flow out of range – MAF Voltage output too high or too low

Revised Oct 31, 2019 to update wiring and measurement directions

Check for missing +12 volts on this circuit. Check the two links for a wiring diagram to help you find the red wire for computer power relay switched +12 volts. Check for 12 volts between the red and black wires on the MAF heater (usually pins A & B). while the connector is plugged into the MAF. This may require the use of a couple of safety pins to probe the MAF connector from the back side of it.

Computer wiring harness connector, wire side.
71316.gif


Computer wiring harness connector, computer side.
88243.gif



Diagrams courtesy of Tmoss and Stang&2Birds

ECC Diagram for 88-90 5.0 Mustangs
88-91_5.0_EEC_Wiring_Diagram.gif


ECC Diagram for 91-93 5.0 Mustangs
91-93_5.0_EEC_Wiring_Diagram.gif


94-95 Diagram for 94-95 5.0 Mustangs[/b]
94-95_5.0_EEC_Wiring_Diagram.gif



How the MAF works

There are three parts in a MAF: the heater, the sensor element and the amplifier. The heater heats the MAF sensor element causing the resistance to increase. The amplifier buffers the MAF output signal and has a resistor that is laser trimmed to provide an output range compatible with the computer's load tables. Changes in RPM causes the airflow to increase or decrease, changing the voltage output. The increase of air across the MAF sensor element causes it to cool, allowing more voltage to pass and telling the computer to increase the fuel flow. A decrease in airflow causes the MAF sensor element to get warmer, decreasing the voltage and reducing the fuel flow.

Actually, MAF pins C & D float with reference to ground. The signal output of the MAF is a differential amplifier setup. Pins C & D both carry the output signal, but one pin's output is inverted from the other. The difference in signal between C & D is what the computer's input circuit is looking for. The difference in the two outputs helps cancel out electrical noise generated by the ignition system and other components. Since the noise will be of the same polarity, wave shape and magnitude, the differential input of the computer electronically subtracts it from the signal. Then it passes the signal on to an Analog to Digital converter section inside the computer's CPU chip.

The MAF element is secured by 2 screws & has 1 wiring connector. To clean the element, remove it from the MAF housing and spray it down with electronic parts cleaner or non-inflammable brake parts cleaner (same stuff in a bigger can and cheaper too).

Do not use body, engine or chassis ground when making resistance or voltage measurements unless specifically instructed to do so.

89-90 Model cars: Measure the MAF output at pins C & D on the MAF connector (dark blue/orange and tan/light blue) or at pins 50 & 9 on the computer. Be sure to measure the sensor output by measuring across the pins and not between the pins and ground.

91-95 Model cars: Measure the MAF output at pins C & D on the MAF connector light blue/red and tan/light blue) or at pins 50 & 9 on the computer. Be sure to measure the sensor output by measuring across the pins and not between the pins and ground.

MAF output readings: Use the computer connector diagram to help choose the proper pin connection on the computer when measuring the MAF output voltage. Since the car is most likely parked for simplicity’s sake, the idling voltage check can the done with the voltmeter directly stuck in the backside of the MAF connector.

At idle = approximately .6 volt
20 MPH = approximately 1.10 volt
40 MPH = approximately 1.70 volt
60 MPH = approximately 2.10 volt

If the output of the MAF C&D pins exceeds the specs above, there are two possible problems:

1.) The MAF sensor is defective and needs to be replaced.
2.) The MAF sensor is installed in a a different housing than the one it was designed for. The sensor is designed to work with a specific MAF part number or model MAF housing.

Check the resistance of the MAF signal wiring
For the next 2 checks make your measurement with the MAF disconnected from the wiring harness.

Pin D on the MAF wiring harness and pin 50 on the computer (dark blue/orange wire) should be less than 2 ohms. Pin C on the MAF wiring harness and pin 9 on the computer (tan/light blue wire) should be less than 2 ohms.

There should be a minimum of 10K ohms between either pin C or D on the MAF wiring connector and pins A or B.

Reconnect the MAF to the wiring harness and proceed to the next section.

See the following website for some help from Tmoss (diagram designer) & Stang&2Birds (website host) for help on 88-95 wiring http://www.veryuseful.com/mustang/tech/engine/

Ignition switch wiring
http://www.veryuseful.com/mustang/tech/engine/images/IgnitionSwitchWiring.gif

Fuel pump, alternator, ignition & A/C wiring
http://www.veryuseful.com/mustang/tech/engine/images/fuel-alt-links-ign-ac.gif

Computer, actuator & sensor wiring
http://www.veryuseful.com/mustang/tech/engine/images/88-91_5.0_EEC_Wiring_Diagram.gif

Fuse panel layout
http://www.veryuseful.com/mustang/tech/engine/images/MustangFuseBox.gif

Vacuum routing
http://www.veryuseful.com/mustang/tech/engine/images/mustangFoxFordVacuumDiagram.jpg



The Code 21will cause a rich mixture as well.
Code 21 or 116
– ECT sensor out of range. Broken or damaged wiring, bad ECT sensor.

[color= blue]Revised 6-Apr-2017 to add diagrams and resistance check for ECT wiring.[/color]

Note that that if the outside air temp is below 50 degrees F that the test for the ECT can be in error. Warm the engine up until you get good hot air from the heater and then dump the codes again.

The computer Engine Coolant Temperature sensor has absolutely nothing to do with the temperature gauge. They are different animals. The ECT sensor is normally located it the passenger side front of the engine in the water feed tubes for the heater. It has two wires that connect by a weathertight plastic connector.

The water temperature sender for the temp gauge is located in the driver's side lower intake manifold. It has a single wire that connects by a push on connector on the temp sender.


If you have replaced the ECT sensor and are still having ECT like problem symptoms, check the ECT wiring .

Computer wiring harness connector, wire side
71316.gif


Computer wiring harness connector, computer side
88243.gif



See the graphic for the 10 pin connector circuit layout.
68512.jpg


Check the resistance of the green wire on the ECT connector to the green wire on pin 7 of the computer connector. You should see less that 1 Ω (ohm)

The ACT & ECT have the same thermistor, so the table values are the same

ACT & ECT test data:

Use Pin 46 on the computer for ground for both ECT & ACT to get most accurate readings.

Pin 7 on the computer - ECT signal in. At 176 degrees F it should be .80 volts

Pin 25 on the computer - ACT signal in. At 50 degrees F it should be 3.5 volts. It is a good number if the ACT is mounted in the inlet airbox. If it is mounted in the lower intake manifold, the voltage readings will be lower because of the heat transfer.


Voltages may be measured across the ECT/ACT by probing the connector from the rear. A pair of safety pins may be helpful in doing this. Use care in doing it so that you don't damage the wiring or connector.

Here's the table :

50 degrees F = 3.52 v
68 degrees F = 3.02 v
86 degrees F = 2.62 v
104 degrees F = 2.16 v
122 degrees F = 1.72 v
140 degrees F = 1.35 v
158 degrees F = 1.04 v
176 degrees F = .80 v
194 degrees F = .61
212 degrees F = .47 v
230 degrees F = .36 v
248 degrees F = .28 v

Ohms measures at the computer with the computer disconnected, or at the sensor with the sensor disconnected.

50 degrees F = 58.75 K ohms
68 degrees F = 37.30 K ohms
86 degrees F = 27.27 K ohms
104 degrees F = 16.15 K ohms
122 degrees F = 10.97 K ohms
140 degrees F = 7.60 K ohms
158 degrees F = 5.37 K ohms
176 degrees F = 3.84 K ohms
194 degrees F = 2.80 K ohms
212 degrees F = 2.07 K ohms
230 degrees F = 1.55 K ohms
248 degrees F = 1.18 k ohms

Diagram courtesy of Tmoss & Stang&2birds



Wiring_Diagram.gif[/

See the following website for some help from Tmoss (diagram designer) & Stang&2Birds
(website host) for help on 88-95 wiring http://www.veryuseful.com/mustang/tech/engine/

Ignition switch wiring

Fuel, alternator, A/C and ignition wiring

Complete computer, actuator & sensor wiring diagram for 88-91 Mass Air Mustangs

Vacuum diagram 89-93 Mustangs
 

Attachments

Last edited:
  • Useful
Reactions: General karthief