5.0 Random Stalling At Idle And After Wot When Returns To Idle

jondeaux

New Member
Jun 8, 2016
2
0
1
I have a rebuilt 90 5.0 in a Miata. If you keep your foot in it and run through the gears car runs like a raped ape, but when you get out of it it stalls. It also stalls randomly at idle, I can let it sit until its warmed up and it will just die. It always fires right back up. After a wide open throttle blast it will die upon returning to idle, then and only then is it hard to restart, it acts "flooded" and you have to to blip the throttle to get it to stay running, and it will hunt for idle for 10-15 seconds, this leads me to think ignition, instead of fuel, because its still fueling when it stalls after WOT or it would not act flooded?, It always restarts and will run. I just bought this car. It had a bad TFI which I replaced. Fuel pressure is at 42-45 psi at idle, I dropped it to 38 but it ran lean so I bumped it back up, wideband showing 12-14 af.

Ive tried it with the SCT chip on stock, 14 TDC and 12 TDC setting, doesn't seem to matter. 2 step is turned off.



5,0, A9PEEC, 24lb injectors, 24lb MAF, INNOVATE wideband AF meter, AEM inline pump, mystery (knock off Aeromotive) regulator, GT40X aluminum heads, SCT switch chip, Comp cam, Pro Comp 1.6, Pro Comp Upper and Lower intake, MSD 6AL, MSD Billet Dizzy, MSD Coil, MSD 2step, NX Plate system, Summit window switch,
 
  • Sponsors (?)


You guys with idle/stall problems could save a lot of time chasing your tails if you would go through the Surging Idle Checklist. Over 50 different people contributed information to it. The first two posts have all the fixes, and steps through the how to find and fix your idle problems without spending a lot of time and money. It includes how to dump the computer codes quickly and simply as one of the first steps. I continue to update it as more people post fixes or ask questions. You can post questions to that sticky and have your name and idle problem recognized. The guys with original problems and fixes get their posts added to the main fix. :D

It's free, I don't get anything for the use of it except knowing I helped a fellow Mustang enthusiast with his car. At last check, it had more than 200,000 hits, which indicates it does help fix idle problems quickly and inexpensively.
 
Dumped codes. 15, 23, 26, 31, 67, 84, 85. The car doesn't have egr pcv (valve cover vents so pcv plugged and vacuum to pcv plugged) or vapor recovery, so I assume I can ignore those. Reset and will see if it sets anything new. Talked to po. He said the ecm is 25 years old and probably bad. It's just laying under the carpet on passenger side. Car has new painless wiring harness. Wondering if it's the vehicle speed sensor, where is that located?
 
Don't waste your time and money replacing the computer until you have fixed ALL the codes.

The codes you listed do not point to the VSS sensor. VSS codes are 27 & 29, neither of which is in your list...


Code 15 - No Keep Alive Memory power to PCM pin 1 or bad PCM (Memory Test Failure).

Revised 15-Nov-2015 to clarify the difference between erasing stored codes and erasing learned adaptive computer settings.

The voltage to the Keep Alive Memory (KAM) is missing (wiring problem) or the KAM is bad. The KAM holds all of the settings that the computer "learns" as it operates and all the stored error codes that are generated as a result of something malfunctioning while the engine is running. Use a voltmeter to check the voltage to the pin 1 on the computer - you should always have 12 volts. No constant 12 volts = bad wiring. If you do always have the 12 volts, then the KAM may be bad and the computer is faulty. Read on further to make this determination, since there are some exceptions.

Clearing the codes by pressing a button on the scan tool or disconnecting the test jumper used to start the code dump does not erase the “learned settings”. Disconnecting the computer from the wiring harness or disconnecting the battery (either power or ground cable) will erase the “learned settings” If the computer has to "relearn" all the optimum settings every time it powers up, the initial 15-30 minutes of operation may exhibit surges, poor low speed performance, and rough idle.

Note that some aftermarket chips will cause code 15 to set. Disconnect the battery and remove the chip, reconnect the battery and retest. If you have a custom burned chip using the data gathered from a dyno session, this may not be advisable since it may drastically alter the fuel/air and timing tables.

For stock engines or engines with minor modifications (OEM cylinder heads, stock 19 LB injectors, no NO2 or pressurized induction).
Before replacing the computer, remove the battery ground cable for about 20 minutes. This will clear all the codes and “learned settings”. Retest after several days of running. If the 15 code is gone, then don't worry about it. If it is still there, then you get to do some troubleshooting.

See the following website for some help from Tmoss (diagram designer) & Stang&2
Birds (website host) for help on 88-95 wiring http://www.veryuseful.com/mustang/tech/engine/

Diagram courtesy of Tmoss & Stang&2birds
88-91_5.0_EEC_Wiring_Diagram.gif


http://www.veryuseful.com/mustang/tech/engine/images/IgnitionSwitchWiring.gif

http://www.veryuseful.com/mustang/tech/engine/images/fuel-alt-links-ign-ac.gif

http://www.veryuseful.com/mustang/tech/engine/images/88-91_5.0_EEC_Wiring_Diagram.gif




Code 23 - Throttle sensor out of range or throttle set too high - TPS needs to be reset to below 1.2 volts at idle. Keep in mind that when you turn the idle screw to set the idle speed, you change the TPS setting.


You'll need a Digital Voltmeter (DVM) to do the job.

Wire colors & functions:
Orange/white = 5 volt VREF from the computer
Dark Green/lt green = TPS output to computer
Black/white = Signal ground from computer

Always use the Dark Green/lt green & Black/white wires to set the TPS base voltage.

Do the test with the ignition switch in the Run position without the engine running.

Use the Orange/white & Black white wires to verify the TPS has the correct 5 volts source from the computer.

When you installed the sensor make sure you place it on the peg right and then tighten it down properly. Loosen the back screw a tiny bit so the sensor can pivot and loosen the front screw enough so you can move it just a little in very small increments. I wouldn’t try to adjust it using marks. Set it at .6.v-.9 v.

1. Always adjust the TPS and Idle with the engine at operating temp. Dive it around for a bit if you can and get it nice and warm.

2. When you probe the leads of the TPS, do not use an engine ground, put the ground probe into the lead of the TPS. You should be connecting both meter probes to the TPS and not one to the TPS and the other to ground.

If setting the TPS doesn’t fix the problem, then you may have wiring problems.
With the power off, measure the resistance between the black/white wire and battery ground. You should see less than 2 ohms. Check the same black /white wire on the TPS and MAP/Baro sensor. More than 1 ohm there and the wire is probably broken in the harness between the engine and the computer. The 10 pin connectors pass the black/white wire back to the computer, and can cause problems.

See the following website for some help from Tmoss (diagram designer) & Stang&2Birds (website host)

http://www.veryuseful.com/mustang/tech/engine/images/88-91eecPinout.gif

See the graphic for the 10 pin connector circuit layout.
salt-pepper-10-pin-connectors-65-jpg.68512.jpg





Code 26 - Mass Air Flow out of range – MAF

There are three parts in a MAF: the heater, the sensor element and the amplifier. The heater heats the MAF sensor element causing the resistance to increase. The amplifier buffers the MAF output signal and has a resistor that is laser trimmed to provide an output range compatible with the computer's load tables.

The MAF element is secured by 2 screws & has 1 wiring connector. To clean the element, remove it from the MAF housing and spray it down with electronic parts cleaner or non-inflammable brake parts cleaner (same stuff in a bigger can and cheaper too).

Look for 12 volts across pins A & B.

The MAF output varies with RPM which causes the airflow to increase or decease. The increase of air across the MAF sensor element causes it to cool, allowing more voltage to pass and telling the computer to increase the fuel flow. A decrease in airflow causes the MAF sensor element to get warmer, decreasing the voltage and reducing the fuel flow. Measure the MAF output at pins C & D on the MAF connector (dark blue/orange and tan/light blue) or at pins 50 & 9 on the computer.

At idle = approximately .6 volt
20 MPH = approximately 1.10 volt
40 MPH = approximately 1.70 volt
60 MPH = approximately 2.10 volt

Check the resistance of the MAF signal wiring. Pin D on the MAF and pin 50 on the computer (dark blue/orange wire) should be less than 2 ohms. Pin C on the MAF and pin 9 on the computer (tan/light blue wire) should be less than 2 ohms.

There should be a minimum of 10K ohms between either pin C or D on the MAF and ground.

See the following website for some help from Tmoss (diagram designer) & Stang&2Birds (website host)

http://www.veryuseful.com/mustang/tech/engine/images/fuel-alt-links-ign-ac.gif

http://www.veryuseful.com/mustang/tech/engine/images/88-91eecPinout.gif




CODE: 31 (KOEO) - EVP circuit below minimum voltage. Vref (5 volt reference voltage supplied by the computer) missing or broken wire or bad connection in circuit. Use a DVM to check for 5 volts on the orange/white wire. If it is missing, look for +5 volts at the orange/white wire on the TPS or MAP sensor located on the firewall near the center of the car. Use the black/white wire for the ground for the DVM.
With the sensor removed from the EGR and still connected, press the plunger and watch the voltage change on the brown/lt green wire. Pull the passenger side kick panel and measure the voltage at the computer. You will need to remove the plastic cover over the wires and probe them from the backside. A safety pin may prove very useful for this task. Use pin 27, EVR input (brown/lt green wire) and pin 46, signal ground (black/white wire) to measure the voltage. The orange/white wire is Vref and should always be 5 volts -/+ .25 volt. Be sure to measure Vref at the EGR sensor to rule out any broken wires or bad connections.
Measuring the voltage at the computer helps you spot broken wiring and intermittent connections.
See the graphic for the 10 pin connector circuit layout.
?temp_hash=3ef2497fff29a7a9daee955cf93e5805.jpg


a9x-series-computer-connector-wire-side-view-gif.71316.gif


attachment.php?attachmentid=49009&d=1171639646.gif





Code 67 –
Revised 2 Nov 2012 to add definition of the NSS functions for both 5 speed and auto transmissions

Cause of problem:
clutch not depressed (5 speed) or car not in neutral or park (auto) or A/C in On position when codes where dumped. Possible neutral safety switch or wiring problem. This code may prevent you from running the Key On Engine On tests.

External evidence from other sources claims that a code 67 can cause an idle surge condition. Do try to find and fix any issues with the switch and wiring if you get a code 67.

What the NSS (Neutral Safety Switch) does:
5 speed transmission: It has no connection with the starter, and the engine can be cranked without it being connected.
Auto transmission: It is the safety interlock that prevents the starter from cranking the engine with the transmission in gear.
What it does for both 5 speed and auto transmission cars:
The computer wants to make sure the A/C is off due to the added load on the engine for the engine running computer diagnostic tests. It also checks to see that the transmission is in Neutral (5 speed and auto transmission) and the clutch depressed (T5, T56, Tremec 3550 & TKO)). This prevents the diagnostics from being run when the car is driven. Key On Engine Running test mode takes the throttle control away from the driver for several tests. This could prove hazardous if the computer was jumpered into test mode and then driven.

The following is for 5 speed cars only.
The NSS code 67 can be bypassed for testing. You will need to temporarily ground computer pin 30 to the chassis. Computer pin 30 uses a Lt blue/yellow wire. Remove the passenger side kick panel and then remove the plastic cover from the computer wiring connector. Use a safety pin to probe the connector from the rear. Jumper the safety pin to the ground near the computer.
Be sure to remove the jumper BEFORE attempting to drive the car!!!

a9x-series-computer-connector-wire-side-view-gif.71316





Code 84 EGR Vacuum Regulator failure – Broken vacuum lines, no +12 volts, regulator coil open circuit, missing EGR vacuum regulator. The EVR regulates vacuum to the EGR valve to maintain the correct amount of vacuum. The solenoid coil should measure 20-70 Ohms resistance. The regulator has a vacuum feed on the bottom which draws from the intake manifold. The other vacuum line is regulated vacuum going to the EGR valve. One side of the EVR electrical circuit is +12 volts anytime the ignition switch is in the run position. The other side of the electrical circuit is the ground path and is controlled by the computer. The computer switches the ground on and off to control the regulator solenoid.




Code 85 CANP solenoid - The Carbon Canister solenoid is inoperative or missing.

Revised 11 –Jan_2015 to add warning about vacuum leaks due to deteriorated hose or missing caps on vacuum lines when the solenoid is removed.

Check vacuum lines for leaks and cracks. Check electrical wiring for loose connections, damaged wiring and insulation. Check solenoid valve operation by grounding the gray/yellow wire to the solenoid and blowing through it.
The computer provides the ground for the solenoid. The red wire to the solenoid is always energized any time the ignition switch is in the run position.

If you disconnected the carbon canister and failed to properly cap the vacuum line coming from under the upper intake manifold, you will have problems. You will also have problems if the remaining hose coming from under the upper intake manifold or caps for the vacuum line are sucking air.

Charcoal canister plumbing - one 3/8" tube from the bottom of the upper manifold to the rubber hose. Rubber hose connects to one side of the canister solenoid valve. Other side of the solenoid valve connects to one side of the canister. The other side of the canister connects to a rubber hose that connects to a line that goes all the way back to the gas tank. There is an electrical connector coming from the passenger side injector harness near #1 injector that plugs into the canister solenoid valve. It's purpose is to vent the gas tank. The solenoid valve opens at cruse to provide some extra fuel. The canister is normally mounted on the passenger side frame rail near the smog pump pulley.

attachment.php


It does not weigh but a pound or so and helps richen up the cruse mixture. It draws no HP & keeps the car from smelling like gasoline in a closed garage. So with all these good things and no bad ones, why not hook it up & use it?


The purge valve solenoid connector is a dangling wire that is near the ECT sensor and oil filler on the passenger side rocker cover. The actual solenoid valve is down next to the carbon canister. There is about 12"-16" of wire that runs parallel to the canister vent hose that comes off the bottom side of the upper intake manifold. That hose connects one port of the solenoid valve; the other port connects to the carbon canister.

The purge valve solenoid should be available at your local auto parts store.

Purge valve solenoid:
6



The carbon canister is normally mounted on the passenger side frame rail near the smog pump pulley.
Carbon Canister:
CP2000photo%20primary__ra_p.jpg
 
Last edited: